Browse > Article

Effect of PEL Exopolysaccharide on the wspF Mutant Phenotypes in Pseudomonas aeruginosa PA14  

Chung, In-Young (Department of Life Science, Sogang University)
Choi, Kelly B. (Department of Life Science, Sogang University)
Heo, Yun-Jeong (Department of Life Science, Sogang University)
Cho, You-Hee (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1227-1234 More about this Journal
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that produces and secretes exopolysaccharides (EPS), in which cells are embedded to form a highly organized community structure called biofilm. Here, we characterized the role of cyclic diguanylate (c-di-GMP) and EPS (PEL) overproduction in the wspF mutant phenotypes of P. aeruginosa PA14 (wrinkly appearance, hyperadherence, impaired motilities, and reduced virulence in acute infections). We confirmed that the elevated c-di-GMP level plays a key role in all the wspF mutant phenotypes listed above, as assessed by ectopic expression of a c-di-GMP-degrading phophodiesterase (PvrR) in the wspF mutant. In contrast, PEL EPS, which is overproduced in the wspF mutant, was necessary for wrinkly appearance and hyperadherence, but not for the impaired flagellar motilities and the attenuated virulence of the wspF mutant. These results suggest that c-di-GMP affects flagellar motility and virulence, independently of EPS production and surface adherence of this bacterium.
Keywords
Pseudomonas aeruginosa; PEL exopolysaccharide; c-di-GMP; virulence; motility;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Kolter, R. and E. P. Greenberg. 2006. Microbial sciences: The superficial life of microbes. Nature 441: 300-302   DOI   ScienceOn
2 Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103: 2833-2838
3 Nguyen, D. and P. K. Singh. 2006. Evolving stealth: Genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc. Natl. Acad. Sci. USA 103: 8305-8306
4 O'Toole, G. A., L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver, and R. Kolter. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310: 91-109   DOI
5 O'Toole, G. A., K. A. Gibbs, P. W. Hager, P. V. Jr. Phibbs, and R. Kolter. 2000. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182: 425-431   DOI   ScienceOn
6 Overhage, J., M. Schemionek, J. S. Webb, and B. H. Rehm. 2005. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl. Environ. Microbiol. 71: 4407-4413   DOI   ScienceOn
7 Semmler, A. B., C. B. Whitchurch, and J. S. Mattick. 1999. Reexamination of twitching motility in Pseudomonas aeruginosa. Microbiology 145: 2863-2873   DOI
8 Smith, E. E., D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffmann, D. A. D'Argenio, et al. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103: 8487-8492
9 Vallet, I., J. W. Olson, S. Lory, A. Lazdunski, and A. Filloux. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA 98: 6911-6916
10 Butler, S. M. and A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101: 5018-5023
11 Caiazza, N. C., J. H. Merritt, K. M. Brothers, and G. A. O' Toole. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189: 3603-3612   DOI   ScienceOn
12 Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352   과학기술학회마을
13 Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322   DOI
14 Darzins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric single-domain response regulator CheY. J. Bacteriol. 175: 5934-5944   DOI
15 Heo, Y.-J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007b. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185   과학기술학회마을
16 Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86   DOI   ScienceOn
17 Drenkard, E. and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743   DOI   ScienceOn
18 Horton, R. M., Z. L. Cai, S. N. Ho, and L. R. Pease. 1990. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528-535
19 Murray, T. S. and B. I. Kazmierczak. 2006. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188: 6995-7004   DOI   ScienceOn
20 Klausen, M., A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50: 61-68   DOI   ScienceOn
21 Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages in various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376   과학기술학회마을
22 Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100: 7907-7912
23 Kulasekara, H., V. Lee, A. Brencic, N. Liberati, J. Urbach, S. Miyata, et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3',5')-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 103: 2839-2844
24 Lee, C. Y., J. W. Chung, J. H. Kim, and K. J. Cho. 2006. Identification of a gene required for gliding motility in Myxococcus xanthus. J. Microbiol. Biotechnol. 16: 771-777   과학기술학회마을
25 Bramhachari, P. V., P. B. Kishor, R. Ramadevi, R. Kumar, R. B. Rao, and S. K. Dubey. 2007. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 17: 44-51   과학기술학회마을
26 Parsek, M. R. and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701   DOI   ScienceOn
27 Shrout, J. D., D. L. Chopp, C. L. Just, M. Hentzer, M. Givskov, and M. R. Parsek. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62: 1264-1277   DOI   ScienceOn
28 Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
29 May, T. B., D. Shinabarger, R. Maharaj, J. Kato, L. Chu, J. D. DeVault, et al. 1991. Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev. 4: 191-206   DOI
30 Friedman, L. and R. Kolter. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457-4465   DOI   ScienceOn
31 MacNeil, S. D., A. Mouzeyan, and P. L. Hartzell. 1994. Genes required for both gliding motility and development in Myxococcus xanthus. Mol. Microbiol. 14: 785-795   DOI   ScienceOn
32 Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major atalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403   DOI   ScienceOn
33 Lee, V. T., J. M. Matewish, J. L. Kessler, M. Hyodo, Y. Hayakawa, and S. Lory. 2007 A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65: 1474-1484   DOI   ScienceOn
34 Stoodley, P., R. Cargo, C. J. Rupp, S. Wilson, and I. Klapper. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29: 361-367   DOI   ScienceOn
35 Govan, J. R. and V. Deretic. 1995. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574
36 Hickman, J. W., D. F. Tifrea, and C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102: 14422-14427
37 D'Argenio, D. A., M. Calfee, P. B. Rainey, and E. C. Pesci. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184: 6481-6489   DOI   ScienceOn
38 Heo, Y.-J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007a. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895   DOI   ScienceOn
39 Romling, U. and D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9: 218-228   DOI   ScienceOn
40 Choi, K. H., A. Kumar, and H. P. Schweizer. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods. 64: 391-397   DOI   ScienceOn
41 Spiers, A. J., S. G. Kahn, J. Bohannon, M. Travisano, and P. B. Rainey. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161: 33-46
42 Tremblay, J., A. P. Richardson, F. Lepine, and E. Deziel. 2007. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ. Microbiol. 9: 2622-2630   DOI   ScienceOn
43 Kirisits, M. J., L. Prost, M. Starkey, and M. R. Parsek. 2005. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71: 4809-4821   DOI   ScienceOn
44 Hassett, D. J., J. Cuppoletti, B. Trapnell, S. V. Lymar, J. J Rowe, S. S. Yoon, et al. 2002 Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443   DOI   ScienceOn
45 Murray, T. S., M. Egan, and B. I. Kazmierczak. 2007. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19: 83-88   DOI   ScienceOn
46 Friedman, L. and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675-690   DOI   ScienceOn