• Title/Summary/Keyword: cAMP response element binding

Search Result 87, Processing Time 0.025 seconds

Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression (무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성)

  • Min Ji Kim;Si Eun Park;Geun soo Lee;Jin Hwa Kim;Sunwoo Kwon;Hyung Seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.204-212
    • /
    • 2023
  • Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.

cDNA microarray gene expression profiling of melittin and mast cell degranulation peptide in human mast cell strain (봉독의 주요성분인 Melittin과 MCDP이 비만세포주에서 유전자 발현에 미치는 영향에 대한 microarray 분석)

  • So, Jae-jin;Woo, Hyun-su;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.37-51
    • /
    • 2005
  • Mast cell is a cell that functions mainly in our body with a respect to inflammation and allergic response. Bee venom has been progressed in a study as a model related to mechanism in alleviation of pain until now, but it is being progressed in a study relevant to immunocyte in anti-inflammation or anti-allergic response. The present study is aimed to present the basis related to a future study of gene, by researching the influence of melittin and MCD Peptide, which are major ingredients in Bee venom, upon the expression of gene in the mast cell strain. In this study, it dealt with melittin and MCD Peptide respectively, in the effective concentration after passing though the experiment of cytotoxicity by using human mast cell strain. Also, with the respect in the aspect of expression in gene that changes at this time, information was obtained through the technique of analyzing microarray. Through experimental statistics, when regarding a case that global M is significant in more than 1 or -1, in melittin, all 7 genes were accelerated, and 8 inhibited. In MCDP, 7 genes were accelerated and 17 genes inhibited. The function in the body to which these genes are related, was associated with the protein binding within a cell, the activation in the function of lymphocyte, the acceptor related to macrophage antigen. In cell nucleus, substance related to GABA A receptor, protein associated with cAMP reactive element, substance related to complement system No.8 and to B-cell, protein substance related to polycystic kidney disease, substance related to inflammation, and the protein substance of influencing coagulation of blood. Through these results of analysis, it could obtain more useful materials in clarifying the mechanism of action in melittin and MCD peptide, which are in charge of mainly medical action in the abdomen. Also, it is thought that an in-depth study on the influence of main ingredients in Bee venom, the wholly honey bee venom aqua upon anti-allergic response or anti-inflammation are further required.

  • PDF

Anti-melanogenic Effects of Cnidium japonicum in B16F10 Murine Melanoma Cells (B16F10 피부 흑색종세포에서 갯사상자 추출물의 멜라닌 합성 저해 효과)

  • Jo, Hyun Jin;Karadeniz, Fatih;Oh, Jung Hwan;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2022
  • Melanin is a pigment produced by melanocytes to protect the skin from external stimuli, mainly ultraviolet (UV) rays. However, abnormal and excessive production of melanin causes hyperpigmentation disorders, such as freckles, age spots, and discoloration. Natural cosmeceuticals are a new trend for treating or preventing hyperpigmentation due to fewer side effects and biocompatibility. In this context, the current study focused on Cnidium japonicum, a halophyte with several uses in folk medicine, to evaluate its potential as a skin-whitening agent. The effect of C. japonicum extract (CJE) on melanin production was analyzed in melanogenesis-stimulated B16F10 melanoma cells. The results showed that CJE successfully inhibited the oxidation of tyrosine and L-DOPA by tyrosinase and subsequently decreased the production of the key enzymes responsible for melanin production: tyrosinase, tyrosinase-related protein-1, and protein-2. This effect was confirmed by decreased intracellular and extracellular melanin levels in B16F10 melanoma cells after CJE treatment. Further experiments to elucidate the action mechanism revealed that CJE treatment suppressed melanin production by inhibiting the activation of glycogen synthase kinase 3 β (GSKβ)/β-catenin and protein kinase A (PKA)/cAMP-response element binding protein (CREB) pathways, which are the upstream activators of melanogenesis. In conclusion, the present study suggests that C. japonicum is a potential natural source of bioactive substances for the development of novel cosmeceuticals that can act against hyperpigmentation.

Loganin Inhibits α-MSH and IBMX-induced Melanogenesis by Suppressing the Expression of Tyrosinase in B16F10 Melanoma Cells (마우스 흑색종 B16F10세포에서 loganin의 티로시나아제 발현 억제를 통한 멜라닌 생성 억제에 대한 기전연구)

  • Jung, Hee Jin;Bang, EunJin;Kim, Byeong Moo;Jeong, Seong Ho;Lee, Gil Han;Chung, Hae Young
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1200-1207
    • /
    • 2019
  • Ultraviolet radiation exposure is a major cause of extrinsic skin aging, which leads to skin hyperpigmentation. Loganin, a major iridoid glycoside obtained from Corni fructus, has anti-inflammatory, anti-diabetic, and neuroprotective effects. In this study, we investigated the mechanisms underlying the anti-melanogenic effects of loganin in B16F10 melanocytes treated with ${\alpha}$-melanocyte stimulating hormone (${\alpha}-MSH$) and 3-isobutyl-1-methylxanthine (IBMX). Anti-melanogenic activity was measured by treating cells with loganin at concentrations between 1 and $20{\mu}m$. Cell viability assays confirmed that doses of loganin up to $20{\mu}m$ were not cytotoxic. Loganin significantly and dose-dependently decreased intracellular melanin production. We also investigated potential molecular signaling pathways for the anti-melanogenesis effects of loganin. Western blotting showed that treatment with ${\alpha}-MSH$ and IBMX increased the phosphorylation of cAMP response element-binding protein (CREB) and the gene expressions of microphthalmia-associated transcription factor (MITF) and tyrosinase. Addition of loganin suppressed these increases, while promoting the phosphorylation of extracellular signal regulated kinase (ERK) and the anti-melanogenesis response. Our data therefore indicated that loganin could attenuate the increased melanin synthesis induced by ${\alpha}-MSH$ and IBMX treatment of B16F10 melanocytes. This attenuation appears to occur by downregulation of CREB phosphorylation and MITF and tyrosinase gene expression and upregulation of ERK phosphorylation. These finding suggests that loganin could be a valuable candidate for treatment of skin diseases related to hyperpigmentation.

Ethanolic Extract of the Seed of Zizyphus jujuba var. spinosa Ameliorates Cognitive Impairment Induced by Cholinergic Blockade in Mice

  • Lee, Hyung Eun;Lee, So Young;Kim, Ju Sun;Park, Se Jin;Kim, Jong Min;Lee, Young Woo;Jung, Jun Man;Kim, Dong Hyun;Shin, Bum Young;Jang, Dae Sik;Kang, Sam Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.299-306
    • /
    • 2013
  • In the present study, we investigated the effect of ethanolic extract of the seed of Zizyphus jujuba var. spinosa (EEZS) on cholinergic blockade-induced memory impairment in mice. Male ICR mice were treated with EEZS. The behavioral tests were conducted using the passive avoidance, the Y-maze, and the Morris water maze tasks. EEZS (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in our present behavioral tasks without changes of locomotor activity. The ameliorating effect of EEZS on scopolamine-induced memory impairment was significantly reversed by a sub-effective dose of MK-801 (0.0125 mg/kg, s.c.). In addition, single administration of EEZS in normal naive mouse enhanced latency time in the passive avoidance task. Western blot analysis was employed to confirm the mechanism of memory-ameliorating effect of EEZS. Administration of EEZS (200 mg/kg) increased the level of memory-related signaling molecules, including phosphorylation of extracellular signal-regulated kinase or cAMP response element-binding protein in the hippocampal region. Also, the time-dependent expression level of brain-derived neurotrophic factor by the administration of EEZS was markedly increased from 3 to 9 h. These results suggest that EEZS has memory-ameliorating effect on scopolamine-induced cognitive impairment, which is mediated by the enhancement of the cholinergic neurotransmitter system, in part, via NMDA receptor signaling, and that EEZS would be useful agent against cognitive dysfunction such as Alzheimer's disease.

New Four-herb Formula Ameliorates Memory Impairments via Neuroprotective Effects on Hippocampal Cells (한약재 4종 복합추출물의 해마신경세포 보호를 통한 기억력 개선)

  • Ahn, Sung Min;Choi, Young Whan;Shin, Hwa Kyoung;Choi, Byung Tae
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.475-483
    • /
    • 2016
  • The current study was conducted to evaluate beneficial effects of a new formula (CWC-9) using four traditional Oriental medicinal herbs, Cynanchum wilfordii, Rehmannia glutinosa, Polygala tenuifolia, and Acorus gramineus, on hippocampal cells and memory function. To examine the neuroprotective effects of a new four-herb extract, cell viability, cytotoxicity, and reactive oxygen species (ROS) assays were performed in HT22 cells and behavioral tests (Morris water maze and passive avoidance retention), Western blot, and immunohistochemistry were performed in a mouse model of focal cerebral ischemia. In HT22 hippocampal cells, pretreatment with CWC-9 resulted in significantly reduced glutamate-induced cell death with suppression of ROS accumulation caused by glutamate. In a mouse model of focal cerebral ischemia, we observed significant improvement of spatial and short-term memory function by treatment with CWC-9. Phosphorylated p38 mitogen-activated protein kinases (MAPK) in hippocampus of ischemic mice were decreased by treatment with CWC-9, but phosphorylated phosphatidylinositol-3 kinase (PI3K) and cAMP response element binding protein (CREB) were significantly enhanced. By immunohistochemical analysis, we confirmed higher expression of phosphorylation of CREB in the hippocampal neurons of CWC-9 treated mice. These results suggest that new multi-herb formula CWC-9 mainly exerted beneficial effects on cognitive function through regulation of neuro-protective signaling pathways associated with CREB.

Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Jeong, Min-Sik;Lee, Sang-Ho;Sung, Jong-Hwan;Seo, Seok-Kyo;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.185-195
    • /
    • 2016
  • Background: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods: Hydrogen peroxide ($H_2O_2$)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results: GINST treatment ($50{\mu}g/mL$, $100{\mu}g/mL$, and $200{\mu}g/mL$) significantly (p < 0.05) inhibited the $H_2O_2$-induced ($200{\mu}M$) cytotoxicity in GC-2spd cells. Furthermore, GINST ($50{\mu}g/mL$ and $100{\mu}g/mL$) significantly (p < 0.05) ameliorated the $H_2O_2$-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-${\alpha}$, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated $H_2O_2$-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.

Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment (베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과)

  • Lee, Chan;Park, Gyu-Hwan;Lee, Jong-Won;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.

Effects of Electroacupucture on NMDA Receptor-dependent Spinal ERK MAPK Expression in CFA-induced Pain Model (전침에 의한 CFA유발 통증모델의 NMDA 수용체 의존적 ERK MAPK 발현 변화)

  • Kim, Ha-Neui;Kim, Yu-Ri;Jang, Ji-Yeon;Choi, Yung-Hyun;Lee, Yong-Tae;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.983-988
    • /
    • 2010
  • The present study aims to investigate a possible mechanism of electroacupuncture (EA) in the spinal dorsal horn that may underlie N-methyl-D-aspartate (NMDA) receptor-associated extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways. The hot plate latency of the ipsilateral hindpaw of EA-treated rats was significantly decreased compared with complete Freund's adjuvant (CFA)-injected ones. The expressions of NR1 and NR2B subuint mRNA of NMDA receptor in the whole L4-5 segments are decreased by CFA treatment, but NR2B subunit was significantly recovered by EA treatment. When we detected the expression of ERK, there were no significant difference between normal and CFA-treated rats with EA or NMDA receptor antagonist MK801. But phosphorylated ERK expressions were markedly induced by CFA, but these inductions were significantly modulated by EA treatment. Although hosphorylation of ERK was also arrested by MK801, these inductions of CFA-injected rats was markedly inhibited only by co-treatment with EA and MK801. Phosphorylated cAMP response element-binding protein (CREB), ERK-related transcriptional factor, showed a significant increase in CFA-treated rats and this increase was slightly inhibited by EA and MK801 treatments. But immunoreaction for phosphorylated CREB were significantly increased by CFA treatment in the superficial laminae of the dorsal horn and these inductions were significantly arrested by co-treatment of EA and MK801. Consequently, the hyperalgesia induced by CFA are associated NMDA receptor and EA and MK801 may showed anti-hyperalgesia via same mechanism for inhibition of ERK and CREB phosphorylation in the dorsal horn.