Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.11.1200

Loganin Inhibits α-MSH and IBMX-induced Melanogenesis by Suppressing the Expression of Tyrosinase in B16F10 Melanoma Cells  

Jung, Hee Jin (Longevity Life Science and Technology Institutes, Pusan National University)
Bang, EunJin (Department of Pharmacy, College of Pharmacy, Pusan National University)
Kim, Byeong Moo (Department of Pharmacy, College of Pharmacy, Pusan National University)
Jeong, Seong Ho (Department of Pharmacy, College of Pharmacy, Pusan National University)
Lee, Gil Han (Department of Pharmacy, College of Pharmacy, Pusan National University)
Chung, Hae Young (Longevity Life Science and Technology Institutes, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.11, 2019 , pp. 1200-1207 More about this Journal
Abstract
Ultraviolet radiation exposure is a major cause of extrinsic skin aging, which leads to skin hyperpigmentation. Loganin, a major iridoid glycoside obtained from Corni fructus, has anti-inflammatory, anti-diabetic, and neuroprotective effects. In this study, we investigated the mechanisms underlying the anti-melanogenic effects of loganin in B16F10 melanocytes treated with ${\alpha}$-melanocyte stimulating hormone (${\alpha}-MSH$) and 3-isobutyl-1-methylxanthine (IBMX). Anti-melanogenic activity was measured by treating cells with loganin at concentrations between 1 and $20{\mu}m$. Cell viability assays confirmed that doses of loganin up to $20{\mu}m$ were not cytotoxic. Loganin significantly and dose-dependently decreased intracellular melanin production. We also investigated potential molecular signaling pathways for the anti-melanogenesis effects of loganin. Western blotting showed that treatment with ${\alpha}-MSH$ and IBMX increased the phosphorylation of cAMP response element-binding protein (CREB) and the gene expressions of microphthalmia-associated transcription factor (MITF) and tyrosinase. Addition of loganin suppressed these increases, while promoting the phosphorylation of extracellular signal regulated kinase (ERK) and the anti-melanogenesis response. Our data therefore indicated that loganin could attenuate the increased melanin synthesis induced by ${\alpha}-MSH$ and IBMX treatment of B16F10 melanocytes. This attenuation appears to occur by downregulation of CREB phosphorylation and MITF and tyrosinase gene expression and upregulation of ERK phosphorylation. These finding suggests that loganin could be a valuable candidate for treatment of skin diseases related to hyperpigmentation.
Keywords
Anti-melanogenesis; iridoid glycoside; loganin; tyrosinase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, F., Singh, A., Yang, Z., Garcia, A., Kong, Y. and Meyskens, F. L. Jr. 2010. MiTF links Erk1/2 kinase and p21 CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells. Mol. Cancer 9, 214.   DOI
2 Phacharapiyangkul, N., Thirapanmethee, K., Sa-Ngiamsuntorn, K., Panich, U., Lee, C. H. and Chomnawang, M. T. 2019. Effect of sucrier banana peel extracts on inhibition of melanogenesis through the ERK signaling pathway. Int. J. Med. Sci. 16, 602-606.   DOI
3 Schiaffino, M. V. 2010. Signaling pathways in melanosome biogenesis and pathology. Int. J. Biochem. Cell Biol. 42, 1094-1104.   DOI
4 Lee, C. M., Jung, H. A., Oh, S. H., Park, C. H., Tanaka, T., Yokozawa, T. and Choi, J. S. 2015. Kinetic and molecular docking studies of loganin and 7-O-galloyl-D-sedoheptulose from Corni fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase. Arch. Pharm. Res. 38, 1090-1098.   DOI
5 Lee, C. S., Jang, W. H., Park, M., Jung, K., Baek, H. S., Joo, Y. H., Park, Y. H. and Lim, K. M. 2013. A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression. Exp. Dermatol. 22, 762-764.   DOI
6 Lee, J., Jung, K., Kim, Y. S. and Park, D. 2007. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci. 81, 249-254.   DOI
7 Lee, W. J., Bang, S., Chung, B. Y., Jung, H., Oh, E. S. and Chang, S. E. 2016. Inhibitory effects of N,N,N-trimethyl phytosphingosine-iodide on melanogenesis via ERK activation-mediated MITF degradation. Biosci. Biotechnol. Biochem. 80, 121-127.   DOI
8 Li, Y., Li, Z., Shi, L., Zhao, C., Shen, B., Tian, Y. and Feng, H. 2016. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model. Int. Immunopharmacol. 36, 173-179.   DOI
9 Liou, S. S., Liu, I. M., Hsu, S. F. and Cheng, J. T. 2004. Corni fructus as the major herb of Die-Huang-Wan for lowering plasma glucose in Wistar rats. J. Pharm. Pharmacol. 56, 1443-1447.   DOI
10 Liu, K., Xu, H., Lv, G., Liu, B., Lee, M. K., Lu, C., Lv, X. and Wu, Y. 2015. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 123, 78-85.   DOI
11 Nawa, Y., Endo, J. and Ohta, T. 2007. The inhibitory effect of the components of Cornus officinalis on melanogenesis. J. Cosmet. Sci. 58, 505-517.
12 Nestle, F. O., Di Meglio, P., Qin, J. Z. and Nickoloff, B. J. 2009. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679-691.   DOI
13 Oka, M., Nagai, H., Ando, H., Fukunaga, M., Matsumura, M., Araki, K., Ogawa, W., Miki, T., Sakaue, M., Tsukamoto, K., Konishi, H., Kikkawa, U. and Ichihashi, M. 2000. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Invest. Dermatol. 115, 699-703.   DOI
14 Park, C. H., Tanaka, T., Kim, J. H., Cho, E. J., Park, J. Shibahara, C. N. and Yokozawa, T. 2011. Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology 290, 14-21.   DOI
15 Park, H. Y., Wu, C., Yonemoto, L., Murphy-Smith, M., Wu, H., Stachur, C. M. and Gilchrest, B. A. 2006. MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem. J. 395, 571-578.   DOI
16 Vareed, S. K., Reddy, M. K., Schutzki, R. E. and Nair, M. G. 2006. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 78, 777-784.   DOI
17 Sim, M. O., Ham, J. R. and Lee, M. K. 2017. Young leaves of reed (Phragmites communis) suppress melanogenesis and oxidative stress in B16F10 melanoma cells. Biomed. Pharmacother. 93, 165-171.   DOI
18 Son, Y. O., Lee, S. A., Kim, S. S., Jang, Y. S., Chun, J. C. and Lee, J. C. 2011. Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation. J. Pharm. Pharmacol. 63, 1309-1319.   DOI
19 Tseng, Y. T., Lin, W. J., Chang, W. H. and Lo, Y. C. 2019. The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: Enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother. Res. 33, 690-701.
20 Videira, I. F., Moura, D. F. and Magina, S. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88, 76-83.   DOI
21 Cui, Y., Wang, Y., Zhao, D., Feng, X., Zhang, L. and Liu, C. 2018. Loganin prevents BV-2 microglia cells from $A{\beta}_{1-42}$-induced inflammation via regulating TLR4/TRAF6/NF-kappaB axis. Cell Biol. Int. 42, 1632-1642.   DOI
22 Yamabe, N., Kang, K. S., Park, C. H., Tanaka, T. and Yokozawa, T. 2009. 7-O-galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biol. Pharm. Bull. 32, 657-664.   DOI
23 Yamabe, N., Noh, J. S., Park, C. H., Kang, K. S., Shibahara, N., Tanaka, T. and Yokozawa, T. 2010. Evaluation of loganin, iridoid glycoside from Corni fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol. 648, 179-187.   DOI
24 Yanase, H., Ando, H., Horikawa, M., Watanabe, M., Mori, T. and Matsuda, N. 2001. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res. 14, 103-109.   DOI
25 Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J. P. and Ballotti, R. 1998. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835.   DOI
26 Chang, J. S., Chiang, L. C., Hsu, F. F. and Lin, C. C. 2004. Chemoprevention against hepatocellular carcinoma of Cornus officinalis in vitro. Am. J. Chin. Med. 32, 717-725.   DOI
27 Chang, T. S. 2012. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 5, 1661-1685.   DOI
28 Costin, G. E. and Hearing, V. J. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994.   DOI
29 Du, J., Miller, A. J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S. and Fisher, D. E. 2003. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 163, 333-343.   DOI
30 Englaro, W., Bertolotto, C., Busca, R., Brunet, A., Pages, G., Ortonne, J. P. and Ballotti, R. 1998. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 273, 9966-9970.   DOI
31 Gilchrest, B. A., Park, H. Y., Eller, M. S. and Yaar, M. 1996. Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol. 63, 1-10.   DOI
32 Goding, C. R. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712-1728.
33 Bertolotto, C., Bille, K., Ortonne, J. P. and Ballotti, R. 1996. Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J. Cell Biol. 134, 747-755.   DOI
34 Jung, H. J., Lee, A. K., Park, Y. J, Lee, S., Kang, D., Jung, Y. S., Chung, H. Y. and Moon, H. R. 2018. (2E,5E)-2,5-bis(3-hydroxy-4-methoxybenzylidene) cyclopentanone exerts anti-melanogenesis and anti-wrinkle activities in B16F10 melanoma and Hs27 fibroblast cells. Molecules 23, 1415.   DOI
35 Widlund, H. R. and Fisher, D. E. 2003. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22, 3035-3041.   DOI
36 Xu, Y. D., Cui, C., Sun, M. F., Zhu, Y. L., Chu, M., Shi, Y. W., Lin, S. L., Yang, X. S. and Shen, Y. Q. 2017. Neuroprotective effects of loganin on MPTP-induced Parkinson's disease mice: neurochemistry, glial reaction and autophagy studies. J. Cell Biochem. 118, 3495-3510.   DOI
37 Yamabe, N., Kang, K. S., Matsuo, Y., Tanaka, T. and Yokozawa, T. 2007. Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 30, 1289-1296.   DOI
38 Yao, L., Peng, S. X., Xu, Y. D., Lin, S. L., Li, Y. H., Liu, C. J., Zhao, H. D., Wang, L. F. and Shen, Y. Q. 2017. Unexpected neuroprotective effects of loganin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity and cell death in zebrafish. J. Cell Biochem. 118, 615-628.   DOI
39 Yokozawa, T., Kang, K. S., Park, C. H., Noh, J. S., Yamabe, N., Shibahara, N. and Tanaka, T. 2010. Bioactive constituents of Corni fructus: The therapeutic use of morroniside, loganin, and 7-O-galloyl-D-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov. Ther. 4, 223-234.
40 Youn, K., Jeong, W. S. and Jun, M. 2013. $\beta$-Secretase (BACE1) inhibitory property of loganin isolated from Corni fructus. Nat. Prod. Res. 27, 1471-1474.   DOI
41 Bhakta, H. K., Park, C. H., Yokozawa, T., Min, B. S., Jung, H. A. and Choi, J. S. 2016. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and beta-secretase 1 inhibitors. Arch. Pharm. Res. 39, 794-805.   DOI
42 Bilodeau, M. L., Greulich, J. D., Hullinger, R. L., Bertolotto, C., Ballotti, R. and Andrisani, O. M. 2001. BMP-2 stimulates tyrosinase gene expression and melanogenesis in differentiated melanocytes. Pigment Cell Res. 14, 328-336.   DOI
43 Busca, R. and Ballotti, R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69.   DOI
44 Busca, R., Bertolotto, C., Ortonne, J. P. and Ballotti, R. 1996. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem. 271, 31824-31830.   DOI
45 Cai, Z., Wang, C., Zou, L., Liu, X., Chen, J., Tan, M., Mei, Y. and Wei, L. 2019. Comparison of multiple bioactive constituents in the flower and the caulis of Lonicera japonica based on UFLC-QTRAP-MS/MS combined with multivariate statistical analysis. Molecules 24, 1936.   DOI
46 Kim, H., Youn, K., Ahn, M. R., Kim, O. Y., Jeong, W. S., Ho, C. T. and Jun, M. 2015. Neuroprotective effect of loganin against $A{\beta}_{25-35}$-induced injury via the $NF-{\kappa}B$-dependent signaling pathway in PC12 cells. Food Funct. 6, 1108-1116.   DOI
47 Kawano, M., Matsuyama, K., Miyamae, Y., Shinmoto, H., Kchouk, M. E., Morio, T., Shigemori, H. and Isoda, H. 2007. Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cells. Exp. Dermatol. 16, 977-984.   DOI
48 Khaled, M., Larribere, L., Bille, K., Ortonne, J. P., Ballotti, R. and Bertolotto, C. 2003. Microphthalmia associated transcription factor is a target of the phosphatidylinositol-3-kinase pathway. J. Invest. Dermatol. 121, 831-836.   DOI
49 Kim, D. S., Park, S. H., Kwon, S. B., Park, E. S., Huh, C. H., Youn, S. W. and Park, K. C. 2006. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 19, 146-153.   DOI
50 Kim, M. J., Bae, G. S., Jo, I. J., Choi, S. B., Kim, D. G., Shin, J. Y., Lee, S. K., Kim, M. J., Shin, S., Song, H. J. and Park, S. J. 2015. Loganin protects against pancreatitis by inhibiting $NF-{\kappa}B$ activation. Eur. J. Pharmacol. 765, 541-550.   DOI
51 Hoh, J. F., Rossmanith, G. H. and Hamilton, A. M. 1991. Effects of dibutyryl cyclic AMP, ouabain, and xanthine derivatives on crossbridge kinetics in rat cardiac muscle. Circ. Res. 68, 702-713.   DOI
52 Ah, A. Y., Hwang, J. Y., Lee, J. S. and Kim, Y. C. 2015. Cornus officinalis methanol extract upregulates melanogenesis in melan-a cells. Toxicol. Res. 31,165-172.   DOI
53 Akihisa, T., Seino, K., Kaneko, E., Watanabe, K., Tochizawa, S., Fukatsu, M., Banno, N., Metori, K. and Kimura, Y. 2010. Melanogenesis inhibitory activities of iridoid-, hemiterpene-, and fatty acid-glycosides from the fruits of Morinda citrifolia (Noni). J. Oleo. Sci. 59, 49-57.   DOI
54 Ando, H., Kondoh, H., Ichihashi, M. and Hearing, V. J. 2007. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Invest. Dermatol. 127, 751-761.   DOI
55 Chang, F. P., Chao, W., Wang, S. Y., Huang, H. C., Sung, P. J., Chen, J. J., Cheng, M. J., Huang, G. J. and Kuo, Y. H. 2018. Three new iridoid derivatives have been isolated from the stems of Neonauclea reticulata (Havil.) Merr. with cytotoxic activity on hepatocellular carcinoma cells. Molecules 23, 2297.   DOI
56 Guo, R., Wang, T., Zhou, G., Xu, M., Yu, X., Zhang, X., Sui, F., Li, C., Tang, L. and Wang, Z. 2018. Botany, phytochemistry, pharmacology and toxicity of strychnos nux-vomica L.: A review. Am. J. Chin. Med. 46, 1-23.   DOI
57 Habib, A., Creminon, C., Frobert, Y., Grassi, J., Pradelles, P. and Maclouf, J. 1993. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268, 23448-23454.   DOI
58 Halaban, R., Pomerantz, S. H., Marshall, S. and Lerner, A. B. 1984. Tyrosinase activity and abundance in Cloudman melanoma cells. Arch. Biochem. Biophys. 230, 383-387.   DOI
59 Hwang, E. S., Kim, H. B., Lee, S., Kim, M. J., Lee, S. O., Han, S. M., Maeng, S. and Park, J. H. 2017. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Physiol. Behav. 171, 243-248.   DOI
60 Jang, J. Y., Lee, J. H., Kang, B. W., Chung, K. T., Choi, Y. H. and Choi, B. T. 2009. Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells. Exp. Dermatol. 18, 232-237.   DOI
61 Jiang, W. L., Zhang, S. P., Hou, J. and Zhu, H. B. 2012. Effect of loganin on experimental diabetic nephropathy. Phytomedicine 19, 217-222.   DOI
62 Lee, A., Kim, J. Y., Heo, J., Cho, D. H., Kim, H. S., An, I. S., An, S. and Bae, S. 2018. The inhibition of melanogenesis via the PKA and ERK signaling pathways by chlamydomonas reinhardtii extract in B16F10 melanoma cells and artificial Human Skin Equivalents. J. Microbiol. Biotechnol. 28, 2121-2132.   DOI
63 Kwon, S. H., Kim, J. A., Hong, S. I., Jung, Y. H., Kim, H. C., Lee, S. Y. and Jang, C. G. 2011. Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem. Int. 58, 533-541.   DOI