• Title/Summary/Keyword: c-nets

Search Result 99, Processing Time 0.026 seconds

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF

Effect of Different Wind-break Net on Reducing Damage of Cold Sea Wind (수도 풍해경감을 위한 방풍강 강목의 효과)

  • 이승필;김상경;이광석;최대웅;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 1990
  • The reducing effect of wind injury was investigated using several wind-break nets in Youngdeok province where cold-wind damage is often occurred during rice growing season. The white-head damage of rice have been often occurred by typhoon during the period between August 15 to September 10 in the cold wind area of the eastern coastal during the last 11 years (1979-1989). This may suggest that the critical period for heading will be by August 15 in the regions. High evaporation coefficient, more than 250 due to typhoon passage over the regions resulted high injury of white head. Generally, the wind injury have been caused by warm and dry westerlies through Fohn apperance in Taebaeg mountains and by cool-humid wind which blows from coast to inland. The frequency of occurrence of the two types of typhoons were 25, 20%, respectively during rice cultivation. The instalation of wind-break net significantly reduced the wind blowing speed, depending on the net mesher with the higher effect in dence net. The distances between the net and cropping area also affect the wind speed: 23% reduction at 1m distance. 34% at 10m and 28% at 20m, respectively. The reducing effect was also observed even at 10 times height of the wind-break net. The instalation of wind-break net gave several effects on climate factor, showing that temperature increased by 0.8$^{\circ}C$(maximum), 0.7$^{\circ}C$(minimum), 0.6$^{\circ}C$(average) : water temperatures increased by 0.5$^{\circ}C$(maximum), 0.6$^{\circ}C$(minimum), 0.5$^{\circ}C$(average) : soil temperature increased 0.4$^{\circ}C$. The earlier heading and increasing growth rate, use of light, culm length, panicle number per hill, spikelet number per panicle, fertility and 1,000 grain weight were observed in the fields with the wind-break nets resulting in 10-15% increase in rice yield using 0.5${\times}$0.5cm nets. The increasing seedlings per hill gave higher grain yield by 13% in the cold wind damage regions of eastern coastals. and the wind-break was more significant in the field without the wind-break net. Wind injury of rice plant in the cold wind regions of eastern coastals in korea could be reduced by selection of tolerant varieties to wind injury, adjustment of transplanting time, and establishment of wind-break nets.

  • PDF

A Study on the Assembling Factors and Catch Fluctuation of Fyke Net Grounds in the Coastal Waters of Yosu(I) -Relation between Catch Fluctuation of Common Mullet, Mugil Cephalus and Temperature and Salinity - (여수 연안 승망 어장의 환경요인과 어획변동에 관한 연구(I) -수온.염분과 어획량과의 관계 -)

  • 김동수;주찬순
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • In order to find out the environmental factors influencing the catch of fyke nets in the coastal waters Yosu, the oceanographic factors, i.e., the waters temperature and the salinity were observed respectively from April to November in 1999, and each of them was compared with the catch of common mullet, Mugil cephalus by fyke net. The results obtained are summerized as follows : 1. The water temperature was ranged from 13.0 to $25^\circ$C and water temperature increased from April to August and decreased on September to November. 2. The range salinity in the fishing grounds was from 28.6 to 33.8$\textperthousand$, and salinity was high from April to June. From July, however, the salinity decreased to continue a low value still september. 3. The catches of common mullet caught by funnel net were the highest in may and the smallest in November. The ranges of optimum water temperature for the funnel nets fishing was 15.0 to $16.0^\circ$C, the ranges of optimum salinity for fishing varied between from 32.6 to 33.8$\textperthousand$.

  • PDF

Two New Marine Clathrids Sponges(Poecilosclerida: Microcionidae) from Jejudo Island, Korea

  • Kim, Hyung-June;Sim, Chung-Ja
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2008
  • Two new marine sponges, Clathria(Clthria) gimnyeoungenesis n. sp. and Clathria(Clthria) reticularis n. sp., were collected in Jejudo Island, Korea by fishing nets in September 1994. C.(C.) gimnyeoungenesis n. sp. is closely related to C.(C.) toxipraedita Topsent, 1913 based on spicule types, but are different in the size of spicules and growth forms. Especially, the thick styles and large toxas length of this species are half of C.(C.) toxipraedita. Growth form of the new species is branched but massive encrusting in C.(C.) toxipraedita. C.(C.) reticularis n. sp. is similar to C.(C.) compressa Schmidt, 1862 based on spicule types, but are different in the size of spicules. Especially, large toxas of this new species is twice as long as C.(C.) compressa and they have large isochelae, which are absent in the latter.

STOCK ASSESSMENT OF YELLOW CROAKER IN THE YELLOW SEA AND EAST CHINA SEA (황해및 동지나해의 참조기자원량 해석 -주로 한국기선저인망, 안강망, 유자망, 일본기선저인망 어장을 중심으로-)

  • SHIN Sang Taek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 1975
  • Yellow croaker, Pseudosciaena manchurica Jordan et Thompson, in the Yellow Sea and the East China Sea are subjected to be caught by trawl nets, stow nets and gill nets throughout the year. Monthly indices of population size are calculated. Mathematic models (I) were used in order to determine catchability coefficient, natural mortality, fishing mortality, coefficient coefficient of the fishing ground and dispersion coefficient from the fishing ground. The results are summarized as follows: 1971 1972 1973 $$Catchability\;coefficient\;(C)=1.9369\times10^{-5}\;7.5459\times10^{-6}\;1.2670\times10^{-5}$$ Natural mortality (M) = 0.1645 0.6152 0.4367 Population for the first half season (February 1 to May 31) 1971 1972 1973 Initial\;population=\;107,100M/T 209,100M/T 214,400M/T Dispersion=83,000' 159,700' 133,400' Natural mortailty= 4,700' 32.700' 19,100' Final population= 2,800' 4,500' 49,000' Population for the latter half season (June 1st to the following January 31st) 1971 1972 1973 Initial population= 44,500M/T 67,500M/T 83,800MT Recruitment= 19,000' 183,900' 67,100' Natural mortality= 5,900' 67,900' 38,500' Final population= 37,000' 168,300' 92,400'.

  • PDF

Timed Petri-nets Modeling and Performance Evaluation of Modular Cell TFT-LCD Manufacturing System (모듈러 셀 TFT-LCD 제조시스템의 시간 페트리네트 모델링과 성능평가)

  • Lee, Sang-Moon;Jang, Seok-Ho;Kang, Sin-Jun;Woo, Kwang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1303-1310
    • /
    • 1999
  • In this paper, the Timed Petri-Nets(TPN) modeling of Modular Cell Manufacturing Systems(MCMS) was investigated to overcome the limit of batch mode operation, which has been one of the most popular manufacturing types to produce an extensive industrial output and to be able to adopt to suitable and quickly changing manufacturing environments. A model of the MCMS was developed in reference to the actual TFT-LCD manufacturing system. TFT-LCD manufacturing system is not mass-productive in batch mode, but it operates in the form of MCMS which consists of a sequence of several cells with four processes of operation, including those of color filter(C/F), TFT, cell, and module. The cell process is further regrouped in those of Front-End and Back-End. For the Back-End cell process, it is reconstructed into a virtual model, consisting of three cells. The TPN modeling encompasses those properties, such as states and operations of machines, the number of buffers, and the processing time. The performance of the modeling was further examined in terms of scheduling system. The productivity in each cells was examined with respect to the change of failure rate of the cell machines and Automatic Guided Vehicles(AGV) using simulation by TPN.

  • PDF

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF