• Title/Summary/Keyword: c-fos

Search Result 484, Processing Time 0.033 seconds

Screening of Natural Compounds for Cancer Prevention by Cytotoxicities and AP-1 Reporter Gene Activities (천연물 지표성분들의 세포독성 및 AP-1 활성 평가를 통한 암예방 기능성 탐색)

  • Choi, Bu-Young;Cho, Seok-Cheol
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.89-95
    • /
    • 2017
  • Cancer-inducing PMA stimulates cells to increase the expression of transcription factor c-Jun/c-fos and then increase the activity of AP-1 in the nucleus. The activity of AP-1 has been reported to cause cancer. In this study, We conducted cytotoxicity experiments to assess the safety of natural marker compounds and also observed inhibition of activator protein(AP-1) activity to predict cancer-preventing effects. The results of this experiment indicated that arctigenin, manassantin A, and B can predict the development of cancer prevention agents.

Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load (주기적인 반복 열하중에 노출된 광섬유 센서의 신뢰성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are currently the most prevalent sensors because of their unique advantages such as ease of multiplexing and capability of performing absolute measurements. They are applied to various structures for structural health monitoring (SHM). The signal characteristics of FBG sensors under thermal loading should be investigated to enhance the reliability of these sensors, because they are exposed to certain cyclic thermal loads due to temperature changes resulting from change of seasons, when they are applied to structures for SHM. In this study, tests on specimens are conducted in a thermal chamber with temperature changes from -$20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. For the specimens, two types of base materials and adhesives that are normally used in the manufacture of packaged FBG sensors are selected. From the test results, it is confirmed that the FBG sensors undergo some degree of compressive strain under cyclic thermal load; this can lead to measurement errors. Hence, a pre-calibration is necessary before applying these sensors to structures for long-term SHM.

Characteristics of Probiotics Isolated from Korean Traditional Foods and Antibacterial Activity of Synbiotics (한국전통발효식품에서 분리한 Probiotics의 특징 및 Synbiotics 항균활성 효과)

  • Moon, Chae-Yun;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.552-558
    • /
    • 2021
  • Traditional foods are manufactured according to the characteristics of each region for the nations of the world. Korea has mainly farmed, and seasonings have developed around rice and vegetables. In fermented foods, lactic acid bacteria such as Lactobacillus sp. and Pediococcus sp. and Bacillus sp. were isolated and identified from fermented foods. In this study, lactic acid bacteria were isolated and identified from commercially available traditional Korean fermented foods, and candidate strains were selected through antibacterial activity tests on human and fish disease bacteria. Thereafter, the final strain was selected by examining the resistance to simulated gastric and intestinal fluids, and hemolysis. The three (M1, K1, C13) final selected latic acid bacteria were miced with prebiotics and the antibacterial activity of synbiotics was evaluated. As for the fist antibacterial activity result, C13 showed high antibacterial acitivity in human diseases and fish diseases. Then, M1, K1 and C13, which did not produce β-haemolysis and were resistant to simulated gastric and intestinal fluids, were subjected to the second antibacterial activity of synbiotics. When the three prebiotics (FOS, GOS, Inulin) and probiotics (M1, K1, C13) were mixed, the antibacterial activity was increased or inhibited. Based on the 16S rRNA gene sequencing results, K1 and M1 were analyzed as Bacillus tequiensis 99.72%, Bacillus subtilis 99.65%, Bacillus inaquosorum 99.72%, Bacillus cabrialesii 99.72%, Bacillus stercoris 99.58%, Bacillus spizizenii 99.58%, Bacillus halotolerans 99.58%, and Bacillus mojavensis 99.51%. And C13 was analyzed as Bacillus velezensis 99.71%, Bacillus nematocida 99.36%, Bacillus amyloliquefaciens 99.44%, Bacillus atrophaeus 99.22%, and Bacillus nakamurai 99.44%.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.

The Anti-Cancer Effect of Apamin in Bee-Venom on Melanoma cell line SK-MEL-2 and Inhibitory Effect on the MAP-Kinase Signal Pathway (약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin의 항암효과(抗癌效果)와 MAP-Kinase 신호전달체계에 관한 연구(硏究))

  • Kim, Youn-Mi;Lee, Jae-Dong;Park, Dong-Seok
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.101-115
    • /
    • 2001
  • Objective : To characterize the antitumorigenic potential of Apamin, one of the major components of bee venom, its effects on cell proliferation and the mitogen-activated protein kinase (MAPK) signal transduction pathway were characterized using the human melanoma cell line SK-MEL-2. Methods & Results : Cell counting analysis for cell death demonstrated that consistent with a previous results, SK-MEL-2 cells treated with $0.5-2.0{\mu}g/ml$ of Apamin showed no recognizable cytotoxic effect whereas detectable induction of cell death was identified at concentrations over $5.0{\mu}g/ml$. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin in a dose- and time-dependent manner. To explore whether Apamin-induced growth suppression is associated with the MAPK signaling pathway, phosphorylation of Erk, a function mediator of MAPK growth-stimulating signal, was examined Western blot assay using a phospho-specific Erkl/2 antibody. A significant increase of Erkl/2 phosphorylation level was observed in Apamin-treated cells compared with untreated control cells. Qantitative RT-PCR analysis revealed that Apamin inhibit expression of MAPK downstream genes such as c-Jun, c-Fos, and cyclin D1 but not expression of MAPK pathway component genes including Ha-Ras, c-Raf-1, MEK1, and Erk. Conclusion : It is strongly suggested that the antitumorigenic activity of Apamin might result in part from its inhibitory effect on the MAPK signaling pathway in human melanoma cells SK-MEL-2.

  • PDF

Anti-Cancer Effects and Apoptosis by Korean Medicinal Herbs

  • Ko Seong Gyu;Jun Chan Yong;Park Chong Hyeong;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.819-825
    • /
    • 2003
  • pharbitis nil and Taraxacum mongolicum are representative herbs that have been used for cancer treatment in Korean traditional medicine. To understand the molecular basis of the antitumor function, we analyzed the effect of these herbs on proliferation and apoptosis of tumor cells using a gastric cancer cell line AGS. Cell counting assay showed that pharbitis nil strongly inhibit cell proliferation Of AGS whereas Taraxacum mongolicum exhibit no detectable effect on cellular growth. [³H]thymidine uptake analysis also demonstrated that DNA replication of AGS is suppressed in a dose-dependent manner by treatment with pharbitis nil. Additionally, tryphan blue exclusion assay showed that Pharbitis nil induce apoptotic cell death of AGS in a dose-dependent. To explore whether anti antiproliferative and/or proapototic property of Pharbitis nil is associated with their effect on gene expression, we performed RT-PCR analysis of cell cycle- and apoptosis-related genes. Interestingly, mRNA expression levels of c-Jun, c-Fos, c-Myc, and Cyclin D1 were markedly reduced by Pharbitis nil. Taraxacum mongolicum also showed inhibitory action on expression of these growth-promoting protooncogene but there effects are less significant, as compared to Pharbitis nil. Furthermore, it was also found that Pharbitis nil activates expression of the p53 tumor suppressor and its downstream effector p21Waf1, which induce G1 cell cycle arrest and apoptosis. Collectively, our data demonstrate that Pharbitis nil induce growth inhibition and apoptosis of human gastric cancer cells and these effects are accompanied with down-and up-regulation of growth-regulating protooncogenes and tumor suppressor genes, respectively. This observation thus suggests that the anticancer effect of Pharbitis nil might be associated with its regulatory capability of tumor-related gene expression.

Anti-inflammatory activity of the water extract of Polygala tenuifolia Willd (원지(遠志)의 항염증 작용에 대한 연구)

  • Oh, Hyun-Suk;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.204-214
    • /
    • 2013
  • Objectives : This study was designed to investigate the cellular and molecular mechanisms of anti-inflammatory activity of the water extract of Polygala tenuifolia Willd. (Pt-WE). Methods : Using lipopolysaccharide (LPS)-stimulated murine RAW264.7 cells, we examined inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$). Also, the inhibitory effect of Pt-WE on the activity of activator protein 1 (AP-1) and upstream signaling molecules was evaluated. To assess the protective effect of Pt-WE on hydrochloride/ethanol (HCl/EtOH)-induced gastric ulcer in mice, we compared Pt-WE (200 mg/kg) with ranitidine (50 mg/kg) treated mice's gastric mucosa, based on gross observations. Results : Pt-WE inhibited LPS-induced production of NO, $PGE_2$ in a dose-dependent manner, without causing cytotoxicity. Pt-WE suppressed AP-1 activation by reducing generations of both c-Jun and c-Fos. In addition, Pt-WE inhibited the p-MKK 4/7 (mitogen-activated protein kinase kinase 4/7) and p-JNK (c-Jun N-terminal kinase) 1 in LPS-stimulated RAW264.7 cells. HCl/EtOH-induced gastric ulcer lesions were inhibited by pre-treatment of Pt-WE based on gross observations. In addition, Pt-WE decreased the phosphorylation level of JNK. Conclusions : These results demonstrate that Pt-WE has anti-inflammatory and gastroprotective effects. Thus, Pt-WE may be used widely in treatment of not only neurodegenerative diseases but also inflammatory diseases.

Strobilanthes crispus Juice Concentrations and Anticancer Effects on DNA Damage, Apoptosis and Gene Expression in Hepatocellular Carcinoma Cells

  • Hussin, Faridah;Eshkoor, Sima Ataollahi;Rahmat, Asmah;Othman, Fauziah;Akim, Abdah;Eshak, Zolkapli
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6047-6053
    • /
    • 2015
  • Background: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability. Objective: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells. Materials and Methods: MTT assays, flow cytometry, comet assays and the reverse transcription-polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers. Results: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent. Conclusions: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

Baicalein Attenuates Oxidative Stress-Induced Expression of Matrix Metalloproteinase-1 by Regulating the ERK/JNK/AP-1 Pathway in Human Keratinocytes

  • Kim, Ki-Cheon;Kang, Sam-Sik;Lee, Jong-Sung;Park, Deok-Hoon;Hyun, Jin-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family is involved in the breakdown of the extracellular matrix during normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as pathological aging, arthritis, and metastasis. Oxidative conditions generate reactive oxygen species (ROS) (e.g., hydrogen peroxide [$H_2O_2$]) in cells, which subsequently induce the synthesis of matrix metalloproteinase-1 (MMP-1). MMP-1, an interstitial collagenase, in turn stimulates an aging phenomenon. In this study, baicalein (5,6,7-trihydroxyfl avone) was investigated for its in vitro activity against $H_2O_2$-induced damage using a human skin keratinocyte model. Baicalein pretreatment signifi cantly inhibited $H_2O_2$-induced up-regulation of MMP-1 mRNA, MMP-1 protein expression and MMP-1 activity in cultured HaCaT keratinocytes. In addition, baicalein decreased the transcriptional activity of activator protein-1 (AP-1) and the expression of c-Fos and c-Jun, both components of the heterodimeric AP-1 transcription factor. Furthermore, baicalein reduced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK), which are upstream of the AP-1 transcription factor. The results of this study suggest that baicalein is involved in the inhibition of oxidative stress-induced expression of MMP-1 via inactivation of the ERK/JNK/AP-1 signaling pathway.

Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells

  • Suyeon Ahn;Ahreum Kwon;Youngsoo Oh;Sangmyung Rhee;Woo Keun Song
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.387-398
    • /
    • 2023
  • Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.