• Title/Summary/Keyword: butterfly design

Search Result 95, Processing Time 0.025 seconds

A Optimization of Butterfly Valve using the Orthogonal Array and the Characteristics Fuction (직교배열표와 특성함수를 이용한 Butterfly Valve의 최적설계)

  • Kang J.;Choi J.S.;Park Y.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1967-1974
    • /
    • 2005
  • The butterfly valve has been used to control a flow effectively in the industrial because of its lightweight, simple structure and the rapidity of its manipulation. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. This paper is evaluated the specificity to get the flow characteristic and stability of the butterfly valve using FEM and CFD. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of three dimensional structures to be multi-objective.

  • PDF

Development of Bi-directional Triple-eccentric Type Butterfly Valve (양방향 삼중편심 버터플라이 밸브 개발)

  • Kim, Soo-Young;Lee, Dong-Myung;Bae, Jung-Hoon;Shin, Sung-Chul;Sul, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.545-551
    • /
    • 2009
  • In naval architecture and offshore engineering, the development and a broad use has been achieved in the field of flow control valves for pipe system. Butterfly valves are also widely used for flow control, but there are not many studies for triple-eccentric butterfly valves. Moreover, if the fluid of pipeline flows in the bi-direction then it makes more complicate to adapt triple-eccentric butterfly valves to flow control. In this study, we are trying to develop a bi-directional triple-eccentric butterfly valve through sealing mechanism and stem design study. Digital mockup using 3D CAD was constructed for shape interference check and structural analysis was conducted for structural safety. Also we performed leakage test to check out the durability of the bi-directional pressure for the developed valve.

SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE (위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계)

  • Yang, S.M.;Baek, S.H.;Kang, S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

Seat Tightness of Flexible Metal Seal of Butterfly Valve at Cryogenic Temperatures (초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구)

  • Ahn, Jun-Tae;Lee, Kyung-Chul;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.643-649
    • /
    • 2011
  • For the development of butterfly valves used in liquefied natural gas (LNG) vessels, the seat tightness is one of the important factors to be taken into account in the valve-design process. An O-ring-type metal seal with a retaining ring showing good seat tightness at cryogenic temperatures has been widely used, despite the high manufacturing costs involved. As an alternative, a flexible solid metal seal offers not only sufficient tightness of the butterfly valve, meeting specification requirements, but also relatively low manufacturing costs. In this study, a design criterion to ensure the seat tightness of the butterfly valve using the flexible solid metal seal is proposed. The contact pressure can be calculated by the simulation of the frictional contact behavior between the surface of the metal seal and the valve disc. The geometry of the flexible solid metal seal is determined so that it satisfies the design criterion for sufficient seat tightness, and is verified by experiments according to BS6755 and BS6364.

A Optimization of Butterfly Valve using the Characteristic Function (특성함수를 이용한 Butterfly Valve의 최적설계)

  • Park, Young-Chul;Choi, Jong-Sub;Kang, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

A Study of Development and Improvement for Butterfly Valve Performance & Life Test Equipment (버터플라이밸브 성능 및 수명시험장치 개발과 개선에 관한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Jung, Dong-Soo;Kim, Jae-Hoom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • The butterfly valve has been used over all industries. It has been studied to improve its performance through the theoretical analysis and the test in industry. Though products adopted those improvements have been sold in markets, manufacturers often launch products without the life test. One reason is because of the long development period and financial difficulties. The other is the lack of the design and fabrication experiences on building the life test equipment. Thus, this study has been researched for the design and fabrication of our life test equipment, and developed and improved the equipment to check the leakage of the valve with the naked eyes during the test.

Design of Butterfly Valve Disk to Minimize Interference at Opening and Closing (개폐 시 최소 간섭을 갖는 버터플라이 밸브 디스크의 설계)

  • Choi Young;Boo Kwangsuk;Yeo Hong-Tae;Hur Kwando;Kim Hokwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.140-145
    • /
    • 2004
  • In this study, the design and analysis of a butterfly valve disk was performed to minimize the rubbing between the disk and the seat at opening and closing. The butterfly valve has double eccentric structure and the contact surface between the disk and the seat is a conical surface. At the instant of opening and closing the valve by the rotation of disk, the positions of zero contact point are changed. Also, if the cone surface is cut in the perpendicular direction to the rotation axis of the valve, the contour of cutting section is hyperbolic. Therefore minimum distance between the origin of the eccentric axis and the hyperbolic curve goes to the position of zero contact point. In order to consider the interferences between the disk and the seat, the thermal-structure coupled field analysis was performed by ANSYS.

Performance Comparison of Butterfly Joints between Manual Member and Pre-cut Member (수가공 및 기계가공 된 나비장 접합부의 성능 비교)

  • Kim, Gwang-Chul;Kim, Jun-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2016
  • To modularize the joints of Hanok, the bending strengths of butterfly joints between pre-cut and manual member were compared. Structural size joints were manufactured and the length, width and thickness of each tenon were produced with different sizes. The ultimate load of pre-cut members was 2 times higher than that of manual members. Degree of anchorage for the joints on pre-cut member was also superior to that of manual member. By the F-test results, a great influence between ultimate load and sizes of tenon was found. In result of multiple regression analysis, the length and thickness of tenon were showed proportion relationships with the ultimate load, but the width of tenon was showed inverse proportion with the ultimate load. The results of this study can be used to identify the relationships among the major influence factors. Futhermore, it might be used as basic data for modularization the joints of Hanok.

Sensitivity Analysis of Design Parameters for Quadruple Offset Butterfly Valve by Operating Torque (작동 토크를 평가 함수로 하는 사중편심 버터플라이밸브 설계 파라미터 민감도 분석)

  • Lee, Dong-Myung;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • Because of industrial development, industrial facilities are becoming more complex and diversified. Plant industries are focused on productivity improvement, cost reduction, and product uniformity by simplifying production processes using automated control. Furthermore, plant industries require higher pressures and temperatures to improve energy efficiency. For this reason, the valves used in plants are operated under harsh conditions. Globe valves and gate valves are mainly used for high pressure these days. However, these valves have various problems, including low maintainability and high cost, due to structural problems. Therefore, butterfly and ball valve applications are increasing in industrial plants. This paper suggests a quadruple-offset butterfly valve that is applicable to bi-direction use, and the principle design parameters are suggested. The selected design parameters are an eccentric flange center line and shaft centerline(Offset 1), an eccentric seat centerline and disc shaft centerline(Offset 2), the angle between the flange centerline and seat wedge angle(Offset 3), the angle between the vertical direction of the disc shaft centerline and seat centerline(Offset 4), and the seat engagement angle. To analyze the interaction effect of the design parameters, ANOM and ANOVA were performed with an orthogonal array. The parameters were found to have effects in the following order: Offset 2, Offset 1, engagement angle, Offset 3, and Offset 4. The interaction between the parameters was insignificant.

A study on selection of Butterfly and Plant Species for Butterfly Gardening (나비정원 조성을 위한 나비 및 식물 선정 연구)

  • SON, Jinkwan;KONG, Minjae;KANG, Donghyeon;LEE, Siyoung;HAN, Songhee;KANG, Banghun;KIM, Namchoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2015
  • Various types of parks such as ecological park, dragonfly park, etc. are tried to design in order to resolve different environmental issues in urban areas. Parks are considered organism habitats that not only improve the biodiversity but also give people a chance to observe living organisms in urban area. This study was conducted to select basic materials for planning a butterfly garden through reference reviews. The following 21 species of butterflies belonged to 1 order, 4 families, and 16 genera were selected: Phengaris teleius, Pseudozizeeria maha, Thecla betulae, Argynnis hyperbius, Dichorragia nesimachus, Hestina assimilis, Polygonia caureum, Sasakia charonda, Vanessa cardui, Vanessa indica, Boloria selene, Byasa alcinous, Papilio machaon, Papilio macilentus, Papilio protenor, Papilio xuthus, Papilio bianor, Sericinus montela, Colias erate, Eurema hecabe, and Pieris rapae. 85 species belonged to 22 families, 59 genera, 74 species, 10 varieties, and 1 subspecies were selected for host and nectar plants for butterflies selected above. These results would be expected to useful in butterfly gardening. After that, we think it is necessary to be applied these study results in field. This study requires a test in the butterfly garden. The test results will be make the butterfly-plant matrix.