• Title/Summary/Keyword: bus architecture

Search Result 269, Processing Time 0.043 seconds

Performance Analysis of TLM in Flying Master Bus Architecture Due To Various Bus Arbitration Policies (다양한 버스 중재방식에 따른 플라잉 마스터 버스아키텍처의 TLM 성능분석)

  • Lee, Kook-Pyo;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • The general bus architecture consists of masters, slaves, arbiter, decoder and so on in shared bus. Specially, as several masters do not concurrently receive the right of bus usage, the arbiter plays an important role in arbitrating between shared bus and masters. Fixed priority, round-robin, TDMA and Lottery methods are developed in general arbitration policies, which lead the efficiency of bus usage in shared bus. On the other hand, the bus architecture can be modified to maximize the system performance. In the paper, we propose the flying master bus architecture that supports the parallel bus communication and analyze its merits and demerits following various arbitration policies that are mentioned above, compared with normal shared bus. From the results of performance verification using TLM(Transaction Level Model), we find that more than 40% of the data communication performance improves, regardless of arbitration policies. As the flying master bus architecture advances its studies and applies various SoCs, it becomes the leading candidate of the high performance bus architecture.

Bi-directional Bus Architecture Suitable to Multitasking in MPEG System (MPEG 시스템용 다중 작업에 적합한 양방향 버스 구조)

  • Jun Chi-hoon;Yeon Gyu-sung;Hwang Tae-jin;Wee Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.9-18
    • /
    • 2005
  • This paper proposes the novel synchronous segmented bus architecture that has the pipeline bus architecture based on OCP(open core protocol) and the memory-oriented bus for MPEG system. The proposed architecture has bus architectures that support the memory interface for image data processing of MPEG system. Also it has the segmented hi-directional multiple bus architecture for multitasking processing by using multi -masters/multi - slave. In the scheme address of masters and slaves are fixed so that they are arranged for the location of IP cores according to operational characteristics of the system for efficient data processing. Also the bus architecture adopts synchronous segmented bus architecture for reuse of IP's and architecture or developed chips. This feature is suitable to the high performance and low power multimedia SoC systum by inherent characteristics of multitasking operation and segmented bus. Proposed bus architecture can have up to 3.7 times improvement in the effective bandwidth md up to 4 times reduction in the communication latency.

Low-Power Bus Architecture Composition for AMBA AXI

  • Na, Sang-Kwon;Yang, Sung;Kyung, Chong-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • A system-on-a-chip communication architecture has a significant impact on the performance and power consumption of modern multi-processors system-on-chips (MPSoCs). However, customization of such architecture for a specific application requires the exploration of a large design space. Thus, system designers need tools to rapidly explore and evaluate communication architectures. In this paper we present the method for application-specific low-power bus architecture synthesis at system-level. Our paper has two contributions. First, we build a bus power model of AMBA AXI bus communication architecture. Second, we incorporate this power model into a low-power architecture exploration algorithm that enables system designers to rapidly explore the target bus architecture. The proposed exploration algorithm reduces power consumption by 20.1% compared to a maximally connected reduced matrix, and the area is also reduced by 20.2% compared to the maximally connected reduced matrix.

Proposal of a Novel Flying Master Bus Architecture For System On a Chip and Its Evaluation (SoC를 위한 새로운 플라잉 마스터 버스 아키텍쳐 구조의 제안과 검증)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • To implement the high performance SoC, we propose the flying master bus architecture that a specially defined master named as the flying master directly accesses the selected slaves with no regard to the bus protocol. The proposed bus architecture was implemented through Verilog and mapped the design into Hynix 0.18um technology. As master and slave wrappers have around 150 logic gate counts, the area overhead is still small considering the typical area of modules in SoC designs. In TLM performance simulation about proposed architecture, 25~40% of transaction cycle and 43~60% of bus efficiency are increased and 43~77% of request cycle is decreased, compared with conventional bus architecture. Conclusively, we assume that the proposed flying master bus architecture is promising as the leading candidate of the bus architecture in the aspect of performance and efficiency.

NAWM Bus Architecture of High Performance for SoC (SoC를 위한 고성능 NAWM 버스 아키텍처)

  • Lee, Kook-Pyo;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.26-32
    • /
    • 2008
  • The conventional shared bus architecture is capable of processing only one data transaction in same time. In this paper, we propose the NAWM (No Arbitration Wild Master) bus architecture that is capable of processing several data transactions in same time. After designing the master and the slave wrappers of NAWM bus architecture about AMBA system, we confirm that most of IPs of AMBA system can be a lied without modification and the added timing delay can be neglected. from simulation we deduce that more than 50% parallel processing is possible when several masters initiate slaves in NAWM bus architecture.

A Novel Globally Asynchronous, Locally Dynamic System Bus Architecture Based on Multitasking Bus (다중처리가 가능한 새로운 Globally Asynchronous, Locally Dynamic System 버스 구조)

  • Choi, Chang-Won;Shin, Hyeon-Chul;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • In this paper, we propose a novel Globally Asynchronous, Locally Dynamic System(GALDS) bus and demonstrate its performance. The proposed GALDS bus is the bidirectional multitasking bus with the segmented bus architecture supporting the concurrent operation of multi-masters and multi-slaves. By analyzing system tasks, the bus architecture chooses the optimal frequency for each If among multiples of bus frequency and thus we can reduce the overall power consumption. For efficient data communications between IPs operating in different frequencies, we designed an asynchronous and bidirectional FIFO based on an asynchronous wrapper with hand-shaking interface. In addition, since systems can be easily expandable by inserting bus segments, the proposed architecture has advantages in IP reusability and structural flexibility As a test example, a four-segment bus haying four masters and four slaves were designed by using Verilog HDL. We demonstrate multitasking operations with read/write data transfers by simulation when the ratios of operation frequency are 1:1, 1:2, 1:4 and 1:8. The data transfer mode is a 16 burst increment mode compatible with Advanced Microcontroller Bus Architecture(AMBA). The maximum operation latency of the proposed GALDS bus is 22 clock cycles for the bus write operation, and 44 clock cycles for read.

A Design of AXI hybrid on-chip Bus Architecture for the Interconnection of MPSoC (MPSoC 인터커넥션을 위한 AXI 하이브리드 온-칩 버스구조 설계)

  • Lee, Kyung-Ho;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.33-44
    • /
    • 2011
  • In this paper, we presents a hybrid on-chip bus architecture based on the AMBA 3.0 AXI protocol for MPSoC with high performance and low power. Among AXI channels, data channels with a lot of traffic are designed by crossbar-switch architecture for massively parallel processing. On the other hand, addressing and write-response channels having a few of traffic is handled by shared-bus architecture due to the overheads of (areas, interconnection wires and power consumption) reduction. In experiments, the comparisons are carried out in terms of time, space and power domains for the verification of proposed hybrid on-chip bus architecture. For $16{\times}16$ bus configuration, the hybrid on-chip bus architecture has almost similar performance in time domain with respect to crossbar on-chip bus architecture, as the masters's latency is differenced about 9% and the total execution time is only about 4%. Furthermore, the hybrid on-chip bus architecture is very effective on the overhead reduction, such as it reduced about 47% of areas, and about 52% of interconnection wires, as well as about 66% of dynamic power consumption. Thus, the presented hybrid on-chip bus architecture is shown to be very effective for the MPSoC interconnection design aiming at high performance and low power.

Design of Crossbar Switch On-chip Bus for Performance Improvement of SoC (SoC의 성능 향상을 위한 크로스바 스위치 온칩 버스 설계)

  • Heo, Jung-Burn;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.684-690
    • /
    • 2010
  • Most of the existing SoCs have shared bus architecture which always has a bottleneck state. The more IPs are in an SOC, the less performance it is of the SOC, Therefore, its performance is effected by the entire communication rather than CPU speed. In this paper, we propose cross-bar switch bus architecture for the reduction of the bottleneck state and the improvement of the performance. The cross-bar switch bus supports up to 8 masters and 16 slaves and parallel communication with architecture of multiple channel bus. Each slave has an arbiter which stores priority information about masters. So, it prevents only one master occupying one slave and supports efficient communication. We compared WISHBONE on-chip shared bus architecture with crossbar switch bus architecture of the SOC platform, which consists of an OpenRISC processor, a VGA/LCD controller, an AC97 controller, a debug interface, a memory interface, and the performance improved by 26.58% than the previous shared bus.

TFT-LCD Controller Implementation Using DMA of High Performance in Multi-Bus Architecture (다중버스 아키텍처 구조에서 고성능 DMA를 이용한 TFT-LCD Controller 구현)

  • Lee, Kook-Pyo;Lee, Keun-Hwan;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.54-60
    • /
    • 2008
  • The bus architecture consists of a master initiating a communication transaction, a slave responding to the transaction, a arbiter selecting a master, a bridge connecting buses and so on. Recently this is more complicated and developed toward multi-bus architecture. In this paper, several cases of multi-shared bus architecture are discussed and in order to decrease the bridge latency, the architecture introducing a memory selector is proposed. Finally, a LCD controller using DMA master is integrated in this bus architecture that is verified due to RTL simulation and FPGA board test. DMA, LCD line buffer and SDRAM controller are normally operated in the timing simulation using ModelSim tool, and the LCD image is confirmed in the real FPGA board containing LCD panel.

A genetic-algorithm-based high-level synthesis for partitioned bus architecture (유전자 알고리즘을 이용한 분할 버스 아키텍처의 상위 수준 합성)

  • 김용주;최기영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.3
    • /
    • pp.1-10
    • /
    • 1997
  • We present an approach to high-level synthesis for a specific target architecture-partitioned bus architecture. In this approach, we have specific goals of minimizing data transfer length and number of buses in addition to common synthesis goals such as minimizing number of control steps and satisfying given resource constraint. Minimizing data transfer length and number of buses can be very important design goals in the era of deep submicron technology in which interconnection delay and area dominate total delay and area of the chip to be designed. in partitioned bus architecture, to get optimal solution satisfying all the goals, partitioning of operation nodes among segments and ordering of segments as well as scheduling and allocation/binding must be considered concurrently. Those additional goals may impose much more complexity on the existing high-level synthesis problem. To cope with this increased complexity and get reasonable results, we have employed two ideas in ur synthesis approach-extension of the target architecture to alleviate bus requirement for data transfer and adoption of genetic algorithm as a principal methodology for design space exploration. Experimental results show that our approach is a promising high-level synthesis mehtodology for partitioned bus architecture.

  • PDF