• Title/Summary/Keyword: buried pipelines

Search Result 186, Processing Time 0.026 seconds

Non-axisymmetric dynamic response of imperfectly bonded buried orthotropic pipelines

  • Dwivedi, J.P.;Mishra, B.K.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.291-304
    • /
    • 1998
  • This paper deals with the non-axisymmetric dynamic response of an imperfectly bonded buried orthotropic pipeline subjected to longitudinal wave (P-wave) excitation. An infinite cylindrical shell model, including the rotary inertia and shear deformation effects, has been used for the pipeline. For some cases comparison of axisymmetric and non-axisymmetric responses have also been furnished.

Experimental Study on Rupturing of Artificial Flaw of Pipes for Life Prediction of Underground High Pressure Gas Pipes (지하매설 고압가스배관의 수명예측을 위한 인위결함 배관의 파열실험)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-Hee;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.62-71
    • /
    • 2018
  • According to own investigation conducted by Korea Gas Safety Corporation Gas Safety Research Institute in 2017, the length of underground pipes in domestic high-pressure gas pipelines is approximately 770km, of which 84% is buried in Ulsan and Yeosu industrial complexes. In particular, 56% of underground pipelines have been in operation for more than 20 years. This suggests urgent management of buried high pressure gas pipelines. PHMSA in US and EGIG in Europe, major causes of accidents in buried gas pipelines are reported as third party damage, external corrosion and loss of pipe wall thickness. Therefore, it is important to evaluate whether the defects affect the remaining life of the pipe when defects occur in the pipe. DNV and ASME have evaluated the residual strength of pipelines through the hydraulic rupture test using pipe specimens with artifact flaws. Once the operating pressure is known through the residual strength of the pipe, the wall thickness at the point at which the pipe ruptures is calculated. If we know the accurate rate of corrosion growth, we can predict the remaining life of pipe. In the study, we carried out experiments with A53 Grade.B and A106 Grade.B, which account for 80% of domestic buried pipes. In order to modify the existing model equation, specimens with a defect depth of 80% to 90% was tested, and a formula expressing the relationship between defect and residual strength was made.

A scientific approach to estimate the safe depth of burial of submarine pipelines against wave forces for different marine soil conditions

  • Neelamani, S.;Al-Banaa, K.
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-34
    • /
    • 2013
  • Submarine pipelines encounter significant wave forces in shallow coastal waters due to the action of waves. In order to reduce such forces (also to protect the pipe against anchors and dropped objects) they are buried below the seabed. The wave force variation due to burial depends on the engineering characteristics of the sub soil like hydraulic conductivity and porosity, apart from the design environmental conditions. For a given wave condition, in certain type of soil, the wave force can reduce drastically with increased burial and in certain other type of soil, it may not. It is hence essential to understand how the wave forces vary in soils of different hydraulic conductivity. Based on physical model study, the wave forces on the buried pipeline model is assessed for a wide range of wave conditions, for different burial depths and for four types of cohesion-less soils, covering hydraulic conductivity in the range of 0.286 to 1.84 mm/s. It is found that for all the four soil types, the horizontal wave force reduces with increase in depth of burial, whereas the vertical force is high for half buried condition. Among the soils, well graded one is better for half buried case, since the least vertical force is experienced for this situation. It is found that uniformly graded and low hydraulic conductivity soil attracts the maximum vertical force for half buried case. A case study analysis is carried out and is reported. The results of this study are useful for submarine buried pipeline design.

Numerical Analysis of Peak Uplift Resistance of Buried Pipeline in Sand and Soft Clay (연약 점토와 사질토에 묻힌 파이프라인의 극한 인발저항력 산정)

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • Subsea pipelines are one of the most important structures used to transport fluids such as oil and natural gas in offshore environments. The uplift behavior of the pipeline caused by earthquakes and buoyancy can result in a pipeline failure. The objective of this study is to examine the peak uplift resistance through parametric studies with numerical modeling by PLAXIS 3D Tunnel. The effects of the embedment ratio and pipe diameter were first examined for uplift resistance in sand and soft clay conditions. Then the length of geogrid layers and the number of geogrid layers were examined in terms of ability to resist uplift behavior.

Analysis of DC Traction Stray Current Interference on Buried Pipelines (지하철 누설전류가 도시가스 배관에 미치는 영향 해석)

  • Lee H.G.;Ha T.H.;Ha Y.C.;Bae J.H.;Kim D.K.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1376-1378
    • /
    • 2004
  • When an underground pipeline runs parallel with DC traction systems, it suffers from DC traction interference. Because the train is fed by the substation through the overhead wire and return current back to the substation via the rails. If these return rails are poorly insulated from earth, DC current leak into the earth and can be picked up by nearby pipeline. It may bring about large-scale accidents even in cathodically protected systems. In this paper we analyze the cathodic protection systems of buried pipelines and DC traction stray current influence on it using the simulation software CatPro. We can discuss the problems and mitigation of DC traction interference for protected pipeline.

  • PDF

Analysis of DC Traction Stray Current Influences on Buried Pipelines (전철 누설전류가 지하매설 배관엘 미치는 영향 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Ha, Y.C.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1273-1275
    • /
    • 2003
  • Corrosion of metallic structures arises when an electric current flows from the metal into the electrolyte such as soil and water. The potential difference across the metal-electrolyte interface, the driving force for the corrosion current, can emerge due to a variety of temperature, pH, humidity etc.. In this paper we analyze P/S potential and axial current of the pipeline with CP systems using BEM and DC traction stray current influences on buried pipelines.

  • PDF

Anode Location of Distributed ICCP Systems for Mitigation of DC Traction Interference on Buried Pipelines (전철 간섭 대책용 분포형 외부전원시스템의 양극위치)

  • Lee, H.G.;Ha, T.H.;Ha, Y.C.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1660-1662
    • /
    • 2005
  • When an underground pipeline runs parallel with DC traction systems, it suffers from DC traction interference. Because the train is fed by the substation through the overhead wire and return current back to the substation via the rails. If these return rails are poorly insulated from earth, DC current leak into the earth and can be picked up by nearby pipeline. It may bring about large-scale accidents even in cathodically protected systems. In this paper we analyze the anode location of distributed impressed current cathodic protection systems for the mitigation of DC traction interference on buried pipelines using the simulation software CatPro. We can get a fix on the anode location.

  • PDF

A Study on the Development and the Verification Experiment of ECDA Equipment (외면부식직접평가 장비 개발 및 실증 시험에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jung, Sung-Won;Park, Kyeong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.72-81
    • /
    • 2016
  • When the coatings of buried steel pipelines are damaged, corrosion could be occurred on the surface of the damaged areas. Moreover the pinhole occurred by corrosion of pipelines may cause accidents due to gas leakage. To prevent these accidents, foreign countries including UK and USA have carried out coating defect detection on the buried gas pipelines by using a DCVG or a ACVG and have conducted direct assessment of pipelines through digging the ground, and if necessary, have repaired the pipelines. That is called ECDA i.e External Corrosion Direct Assessment which is regulated by NACE standards(SP 0502) and etc. In Korea, the ECDA provisions were included in KGS FS551 in 2014 when the regulations of Safety Validation in Detail for the medium-pressure piping were introduced. We have developed the equipment which can be used to detect external corrosion of the buried gas pipelines. We have also constructed pipeline test bed for empirical test of the developed equipment. In addition, we have carried out the verification experiments of the developed equipment on the test bed to demonstrate the performance of the equipment. The experiments were conducted by comparison tests of the developed equipment and other equipments which have been introduced and used in Korea. As the result, we have found the developed equipment is easier to use and has far superior performance compared to other equipment being used in Korea.

A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems (송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).