• Title/Summary/Keyword: buried pipeline

Search Result 218, Processing Time 0.027 seconds

Numerical Analysis of the Interference of the Buried Pipeline due to the Stray Current from the Parallel Electric Railway (전기철도와 평행한 매설배관에서 누설전류에 의한 간섭현상의 수치해석적 연구)

  • Jung, Chan-Oong;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • The stray current interference problem could induce the corrosion of near-by structure and rail itself. Many efforts has been concentrated on the reduction of the interference. In this work the influences of separation distance, soil resistivity, pipe coating resistance, leak resistance of rail were studied using the numerical analysis methods. These analysis could be used to estimate the sensitivity of each variables in the study of the mitigation method and their numerical analysis.

  • PDF

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

Evaluation of fatigue poperties of base and weld metal for API 5L X65 pipeline (API 5L X65 배관 모재 및 용접부 피로특성 평가)

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • The pipelines for natural gas transmission were buried in the ground of 1.5m depth. The pipelines were continuously subjected to vehicle load and internal pressure change by the quantity consumed of natural gas. In this paper, high cycle fatigue properties of natural gas transmission pipelines were studied. Fatigue specimens were obtained from the base and weld metal of circular pipe. Fatigue strength increased with increasing yield strength. Especially, the fatigue strength of base metal was higher than the yield strength of base metal and the fatigue strength of weld metal by manufactured process of TMCP.

  • PDF

Development of Split Tees for Gas Steel Pipelines (강재 가스배관용 분기티의 개발 연구)

  • Kim Young Gyu;Noh Ou Sun;Kim Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.6-12
    • /
    • 2000
  • We have developed a new split tee which can be used to effectively branch into a main gas steel pipelines without losing any gas pressure or having to shut down a line. The split tee has been designed considering the locations of branch connection to the pipelines. Therefore, we could keep the depth of buried pipelines which used to be the problem of the conventional split tees. Test results of the developed split tee showed that the performance of the tightness, hydraulic strength, sealing, welding, bending, and compatibility were excellent. The application of the split tee can provide the advantage of eliminating cost and time, and easy field pipeline coatings.

  • PDF

A Study on Multi-story Building Users' Opinions about the Installation of Emergency Plumbing Equipment for Preventing the Spread of Water Leakage (다층건물 사용자의 누수확대 방지용 비상배수설비 설치에 대한 의견 연구)

  • Yeon, Cheol-Soo;Seo, Jin-Hyeong
    • Journal of the Korean housing association
    • /
    • v.27 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • The purpose of this study is to examine the necessity of 'emergency plumbing equipment for preventing the spread of water leakage'. It reviews social and economic costs when there is spread of water leakage and finds out that those are enormous. Expansion of water leakage causes conflicts between neighbors, economic loss and inconvenience from damages on facilities like elevator and power failure. Next, it examines the inability of existing plumbing equipment when it comes to spread of water leakage. Newly defined 'Surface Leakage' means rapid leak in the surface, and 'Internal Leakage' means seeping out slowly and gradually buried in the pipeline. It will also be analyzed by separating the concept of a leak in the two concepts of a 'Surface Leakage' and 'Internal Leakage'. It proposes emergency plumbing equipment for preventing the spread of water leakage as a solution for the expansion of water leakage. It explains general concepts of emergency plumbing equipment for preventing the spread of water leakage. It will also examine the effectiveness of the user by performing a survey of 420 multi-level building their opinion on the effects of an emergency plumbing equipments to prevent the spread of water leakage.

The Determination of Optimal Steel Pipe Wall Thickness Considering Ground Condition (지반 조건을 고려한 최적강관두께의 결정)

  • Park, Jaesung;Oh, Bungdong;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.11-15
    • /
    • 2008
  • By considering manufacture and economic factor, the steel pipes have been employed for water supply pipeline with large diameter. The standard to decide a thickness of pipe was provided by the waterworks standard (Ministry of Construction & Transportation, 1992) in South Korea. However, there was no the systematic standard to confirm a thickness of pipe in it. Thus, it should be able to apply to unsuitable the Stewart formula for the buried pipe to design for an optimum thickness of pipe. In order to meet revised the waterworks standard (The Ministry of Environment, 1997), it has been considered both the ground condition and all of the stresses to compute a thickness of pipe. As a results, a method is suggested to determine thickness of pipe after comparing and validating the obtained results with the established results from the Stewart formula.

  • PDF

Investigation for Earth Resistance and Leakage Current of D/L (배전선로 접지저항 및 누설전류 실태조사)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Ha, Y.C.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.379-381
    • /
    • 2003
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. This causes induced voltages on underground metallic pipelines due to the power line currents. This could cause AC corrosion in the pipeline, which could in turn lead to disastrous accidents, such as gas explosion or oil leakage. This paper investigates for the limitation of induced voltage on the buried metal structures which is used in the inside and outside of the country. And then we measure the earth resistance and leakage current of 22.9kV distribution lines and pipe to soil potential of near pipelines in Seoul Korea. Hereby we can see the leakage current flowing through the earthing electrode have an effect on near pipelines.

  • PDF

Risk Ranking Analysis for the City-Gas Pipelines in the Underground Laying Facilities (지하매설물 중 도시가스 지하배관에 대한 위험성 서열화 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.54-66
    • /
    • 2004
  • In this article, we are to suggest the hazard-assessing method for the underground pipelines, and find out the pipeline-maintenance schemes of high efficiency in cost. Three kinds of methods are applied in order to refer to the approaching methods of listing the hazards for the underground pipelines: the first is RBI(Risk Based Inspection), which firstly assess the effect of the neighboring population, the dimension, thickness of pipe, and working time. It enables us to estimate quantitatively the risk exposure. The second is the scoring system which is based on the environmental factors of the buried pipelines. Last we quantify the frequency of the releases using the present THOMAS' theory. In this work, as a result of assessing the hazard of it using SPC scheme, the hazard score related to how the gas pipelines erodes indicate the numbers from 30 to 70, which means that the assessing criteria define well the relative hazards of actual pipelines. Therefore. even if one pipeline region is relatively low score, it can have the high frequency of leakage due to its longer length. The acceptable limit of the release frequency of pipeline shows 2.50E-2 to 1.00E-l/yr, from which we must take the appropriate actions to have the consequence to be less than the acceptable region. The prediction of total frequency using regression analysis shows the limit operating time of pipeline is the range of 11 to 13 years, which is well consistent with that of the actual pipeline. Concludingly, the hazard-listing scheme suggested in this research will be very effectively applied to maintaining the underground pipelines.

Effects of Civil Blasting on Noise, Vibration and Total Suspended Particles (토목 발파가 소음, 진동, 부유 분진에 미치는 영향)

  • Jeong, Jin Do;Jeong, Yeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.99-107
    • /
    • 2004
  • This research is to determine the level of environmental pollution at a blasting construction area which is the origin of noise, vibration, and suspended particle, and to compare the results with other domestic and international standard data. This experiment is also to find out the effects resulting from blasting construction and to propose a plan that can decrease environmental pollution. The blasting construction area is a factory site which is about one and half million square meter and sewage disposal plant is about ninety thousand square meter. Both were selected as the areas for the tests to be conducted in determination test. The test to determine the level of noise, vibration, and total suspended particle was conducted thirty times around the blasting construction area by comparing measurement results and numerical analysis. However, as the test was not conducted in the laboratory but in the actual blasting construction area, it was not possible to do the test with the same exact conditions each true. Therefore, the test was not ideal as conditions could change from test to test. For the most part, the level of noise was below the standard level of 70dB. Every vibration test was under the standard limitation. For example, a house, 200m away was tested for noise and vibration and the level was found to be under the 0.2 cm/sec which is the standard for specialty designed cultural sites., i.e very low level. Also a buried oil pipeline that was 30m away also marked under 2.0cm/sec which is the norm for an industrial area. However, if there were an oil pipeline under the house, the amount of charging gunpowder per hole should be decreased compared to the amount used in the test. The test result for suspended particles under the standard limitation which is 24hour average 300$\mu\textrm{g}$/㎥ at a distance from blasting wavelength, but at detonator, total suspended particle from the blast origin exceeded the standard limitation. If explosion occurs when it detonates in the hole, most of the energy would be absorbed in the crushing of rocks, but some remaining energy would make noises and vibration inevitable. So the important thing is how to minimize the environmental pollution from the blasting. There should be regulations in order that the standard limitation is not exceeded, and to decrease the environmental pollution from the blasting.

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.