• Title/Summary/Keyword: buried pipeline

Search Result 218, Processing Time 0.022 seconds

Dynamic Response of Underground Three-layered Pipeline Subjected to Pile Driving Loads : I. Distance (건설 현장 항타하중에 의한 지중 삼중관 진동 거동: I. 이격 거리)

  • Kim, Moon-Kyum;Won, Jong-Hwa;Choi, Joung-Hyun;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.58-66
    • /
    • 2011
  • This study presents the behavior characteristics of buried three-layered pipeline subjected to pile driving loads. The analysis considered the driving energy caused by 7 tonf of ram weight and 1.2m of stroke. Also the distance from vibration resource to pipeline varies in 5m to 30m. The vibration velocity and stress are investigated at the center of pipeline in longitudinal direction. In the same cover depth, attenuation ratio of vibration velocity and von Mises stresses for distance increment has shown a decreasing trend. The maximum stress occurs at the top and bottom for the inner pipe, however, an irregular stress distribution is found for the outer pipe.

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF

A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths (하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구)

  • Park, Rae-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4322-4327
    • /
    • 2015
  • Improper backfill materials and compaction controls under pipelines have become one of the major causes of failure in many sewage pipeline systems. A study on backfill materials and compaction controls has been considered for a long time. However, structural supporters under the pipe were recently concerned because of pipeline repair and maintenance. This paper presents a prefabricated plastic foundation for supporting a sewage pipe system and increasing the performance function of the pipes. Several analytical models for the plastic foundations were investigated using finite-element program, ABAQUS, for checking safety. Comparing with the results of analyses, some of economic design sections based on the sizes of pipe diameters, 600mm, 700 and 600mm, were evaluated. These results could be applied to a pipeline system with a prefabricated plastic foundation with respect to pipe diameters and buried depths.

Proposition of Improved Semi-Analytical Relationship considering Response Characteristics of Buried Pipeline (지중매설관로의 거동특성을 반영한 개선된 해석적 관계식의 제안)

  • 김태욱;임윤묵;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.37-46
    • /
    • 2003
  • Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, Especially for the semi-analytical relationship considering transverse PGD, it has somewhat limited applicability : since it has different formula according to the width of PGD and does not reflect various patterns of PGD which is caused by the decrease of soil stiffness, Therefore, in this study, the applicability of existing analytical relationship is closely investigated through the comparison of FEM results at first. And then, based on meaningful contemplation, improved analytical relationship is proposed. The proposed one models the system behavior of buried pipeline as the combination of cable and beam, and thus it is applicable to arbitrary width of PGD, Moreover, it does reflect various patterns of PGD by introducing interaction pattern coefficient. Through the comparison of numerical results using the FEM and the proposed analytical relationship, rational applicability is objectively verified and noticeable considerations are discussed, Moreover, analyses considering the change of PGD magnitude and patterns are performed.

A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems (송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

Experimental and Numerical Analysis on Vibration Behavior of Underground Three-layered Pipeline subjected to Dump Truck Loads (덤프트럭 재하 조건에 따른 지중 삼중관의 실험 및 수치해석적 진동 거동 분석)

  • Cho, Seok-Ho;Won, Jong-Hwa;Kim, Jeong-Jae;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Pipes buried in around a construction site of urbanized area tend to be affected by the vibration caused by construction loads. The behaviors of buried pipes affected by periodic vibration were analyzed through numerical analyses based on existing study and experimental results. From the results of theses analyses, the serviceability of buried pipes subjected to vibration was verified. This study analyzed the pipe behaviors subjected to dump truck loads with respect to burial depths, and this research was performed as foundation study to establish standards for managing buried pipes. The analyses were performed with burial depth of 0.6, 1.2, 1.8m and vehicle velocity of 10km/h. From theses analyses, the vibration velocity and occurred stress tend to decrease as a burial depth increases.

The Development and Introduction of External Corrosion Direct Assessment Measures for Urban Gas Pipelines (외면부식 직접평가법 개발 및 국내 도입 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Yoon, Yung-Ki;Lim, Ho-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 2014
  • To minimize the risk of corrosion on buried pipeline and to maximize the efficiency of cathodic protection, various indirect inspection techniques have been used for decades. In the United States, 49 CFR has regulated the external corrosion direct assessment for buried pipelines. In Korea, there is no provision for external corrosion direct assessment but there is only, according to the KGS Code, provision that if the survey of the defects of buried pipeline and the leakage test for the pipe were conducted, it is deemed to leakage inspection. We, therefore, have suggested external corrosion direct assessment method appropriate to domestic status through the survey of the regulations and standards of UK and the USA and the investigation of domestic situation on coating damage detection method. The proposed external corrosion direct evaluation method was used as the basis when introducing the precision safety diagnosis regulation for the medium-pressure pipe in Korea.