• Title/Summary/Keyword: buried facilities

Search Result 84, Processing Time 0.031 seconds

Heating and Cooling Effect of Portected Horticulture by Geothermal Heat Pump System with Horizontal Heat Exchanger (수평형 지열히트펌프 시스템의 시설원예 냉난방 실증 효과)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kim, Young-Jung;Kang, Keun-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.630-633
    • /
    • 2008
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house and etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump system in agriculture, a horizontal geothermal heat pump system of 10 RT was installed in greenhouse. Heating and cooling performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of $14^{\circ}C$ with depth of 1.75m and heating COP of 3.75 at soil temperature of $7^{\circ}C$ with the same depth. The cooling COP was 2.7 at ground temperature at 1.75m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$.

  • PDF

Development and performance evaluation of Machine Control Kit mountable to general excavators (일반 굴삭기 장착 가능한 머신 컨트롤 키트 개발 및 성능 평가)

  • K.S. Lee;K.S. Kim;J.B. Jeong;E.S. Pak;J.I. Koh;J.J. Park;S.H. Joo
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, to prevent accidents in underground facilities during excavation, we developed a Lv.3 automated control system that can be configured as an electronic control system without changing the existing hydraulic system in a general excavator and utilized digital map information of underground facilities. We aimed to develop a strategy to prevent accidents caused by operator error. To implement this, a real-time excavator bucket end position recognition and control system was developed through angle measurement of the boom, arm, and bucket using an electronic joystick, RTK-GPS, and angle sensors. In addition, excavators are large, machine-based equipment, and it is difficult to control overshoot due to inertia with feedback control using position recognition information of the bucket tip. Therefore, feed-forward control is used to calculate the moving speed of the bucket tip in real-time to determine the target position. We developed a technology that can converge and verified the performance of the developed system through actual vehicle installation and field tests.

Improving the Detection of the Water Mains Underground Facilities (상수도 지하시설물 탐사 개선에 관한 연구)

  • Kim, Jae-Myeong;Lee, Byung-Woon;Choi, Yun-Soo;Yoon, Ha-Su
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.23-32
    • /
    • 2010
  • Water mains underground facilities are essential components to make up urban infrastructure. In order to manage these water mains underground facilities systematically and scientifically, GIS (Geographic Information System) had been constructed. For the sake of construction of GIS for water mains underground facilities, an exact underground detection and the construction of DB (Data Base) for buried water mains underground facilities should be preceded. In this study, in order to find out the ways to improve exact detection rate of data, the statistical analysis for the causes of detection raw degradation was done, and standardization methods of detection through a case study were suggested, When water mains underground facilities were measured, the detection of non-metallic water pipes was not carried out. The reason was that the results of detection was uncertain and detection was difficult because the assessment of public measurements was vulnerable. Moreover, due to the absence of standardized operating regulations for detection, systematic surveys weren't conducted. In this study, methods to standardize works over the detection of water mains underground facilities were presented so that we can improve the detection rate when we are doing that. As the proposals to improve detection rate, effective performance assessment over non-metallic pipes were presented, and related issues to supplement work regulations of public survey were described systematically.

Diagnostic Technique for Cast Resin Molded Transformer Windings Using Active Thermography

  • Lim Young-Bae;Jung Jong-Wook;Jung Jin-Soo;Cho Seong-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Temperature distribution measured to estimate the condition of an electrical apparatus is an absolute reference for the apparatus conditions and the difference between the reference temperature and the current temperature. Because of passive thermography, without the external thermal stimulation, the difference in surface temperature between the region of interest and back ground shows that the results can apply only to the estimation or the monitoring for the condition of loose terminal and the overload pertaining to the rise in temperature. However, a thermal diffusion in the active thermography is differently generated by the structure and condition of the surface and subsurface. This paper presents a nondestructive test using this behavior and deals with the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

Suitability valuation of Underground Facility Construction Using GIS (GIS를 활용한 지하시설물 시공의 적정성 평가)

  • 김감래;이재기;임건혁
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.465-469
    • /
    • 2004
  • The purpose of this study is to evaluate suitability of Underground Facility Construction in great land development area. Because there are the construct of national integration information control system and the advance of information technique, the necessity that construct the UIS to manage the urban space systematically is enlarged. In the purpose that we prepare the base of underground facility management system by driving the step digitalizing facilities buried underground and protect urban safety accident, we introduce the GIS in land development area. This study proposes the improvement direction by examining the outcome through the driving method and the outcome analysis.

  • PDF

Establishment of Phosphorus Flow Model in Urban Area using Material Flow Analysis

  • Lee, Mina;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.80-84
    • /
    • 2014
  • Phosphorus (P) is an essential nutrient for all living organisms. P is mostly obtained from mined rock phosphate. However, existing rock phosphate reserves could be exhausted in the next 50-100 years. As Korea is totally dependent on imported rock phosphate, we should seek for solution to overcome the P depletion by efficient use and recycling. For this, this study suggested a P flow model to identify the location and flow route of P in urban area based on traditional material flow analysis. The type of P entering the urban areas are fertilizer, food and feed. Each type of P is used in agriculture, human consumption and animal husbandry. After going through each process, P is moved to waste management facilities within food waste, excreta and sewage. Some portion of P in waste are buried, incinerated and discharged, which can be reservoir of P in the future.

A Study on the Earthing System (접지시스템에 관한 연구)

  • Seol, Dong-Hwa;Kim, Myeong-Saeng;Kim, Chang-Bong;Woo, Jea-Wook
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.375-378
    • /
    • 2009
  • This paper will arrange and classify the earthing system by the latest developed technique tendency, and suggest how to solve the problem of a current earthing system. The 3rd generation earthing system is environment-friendly and designed to use discharge electrodes, catalysts and heat rays. A discharge current has increased by 31 [A] in the 3rd generation of earthing system compared to the 2nd one and it is 25 times faster. This system is not buried under but built on the ground. It solves the problems that the current system has; expenses, time, area and pollutions followed by the construction.

  • PDF

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

The Comparison Analysis of Field Test Cases on Technical Specifications of Electrolytic Corrosion in Urban Railway (국내 도시철도 전식방지 기술기준에 따른 시험사례 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.305-310
    • /
    • 2010
  • DC electricity feeder system operating in the urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is flowed on a structure that is not part of the intended electrical circuit with respect to a given structure. This paper presents comparison analysis of field test cases based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems. As a result of it, we confirmed that measurement methods are different from each other about the same tests. Therefore measurement methods to prevent electrolytic corrosion need to establish electrical facilities standards to be applied domestic.

A study on the anti-freezing of light weight electric traction system testing road (경량전철 시스템 선로 결빙방지에 관한 연구)

  • Woo, Jae-Ho;Han, Kyu-Il;Kim, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2256-2261
    • /
    • 2008
  • The electric snow melting and deicing system by electric heating cable which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow or ice accumulated on it. The electric heating cables are buried under paved road at a certain depth and a certain pitch and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitches for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature($-2^{\circ}C$, $-5^{\circ}C$), the pitches of the electric heating cables (200 mm, 300 mm), heating value ($250\;W/m^2$, $300\;W/m^2$, $350\;W/m^2$).

  • PDF