• 제목/요약/키워드: buried depth

검색결과 250건 처리시간 0.023초

성토하에 매설된 관의 거동 (Behavior of Buried Pipe under Embankment)

  • 강병희;윤유원
    • 한국지반공학회지:지반
    • /
    • 제4권1호
    • /
    • pp.49-58
    • /
    • 1988
  • 성토하에 매설된 강관에 작용하는 응력을 유한요소법을 이용하여 탄소성해석을 하고 성토높이, 성토 흙의 탄성계수, 관의 두께, 트렌치의 폭 및 깊이가 응력에 미치는 영향을 검토하였다. 그리고 탄소 성해석결과와 Marston-Spangler이론에 의한 응력을 비교하였다. 연구결과 관직경과 관두께와의 비가 400인 경우에는 탄소성해석 결과와 Spangler이론의 연성관 해석 결과가 비슷하나 이 비가 200보다 작은 두께가 두꺼운 강관의 경우에는 연성관해석이 적합치 않는것 같다. 그리고 강성관해석에 의해서 구한 연직하중은 성토높이, 성토흙의 탄성계수, 관의 두께, 트렌치의 폭 및 깊이에 한계없이 연성관해석에 의한 값보다 항상 크다.

  • PDF

하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구 (A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths)

  • 박래진;박종섭
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4322-4327
    • /
    • 2015
  • 하수관거 시설은 현장 시공시 다짐 불량 및 뒤채움재의 품질관리 미흡으로 인해 하수관거의 이격 및 부등침하가 발생되고, 이음부나 관의 손상이 심화되는 경우 누수가 발생된다. 노후화로 인해 유지 및 보수, 신설 비용은 매년 증가하고, 누수로 인한 인접 매립시설물 및 지하수로의 유입으로 인해 오염사례가 보고된 바 있으며, 최근에는 싱크홀의 문제를 야기하여 사회적 관심이 증대되었다. 따라서 많은 연구자들에 의해 하수관거의 기초에 대한 채움재관련 연구가 오랫동안 연구되어 왔으며, 신재생재료에 대한 관심 수요가 증가하여 재생재료를 활용한 연구들도 활발히 진행되고 있다. 본 연구에서는 하수관거를 지지하는 기초의 안전성과 경제성을 동시에 지닌 재활용재료를 활용한 조립식 하수관거 기초에 대해 연구를 진행하였으며, 사후처방방식이 아닌, 시공단계에서 사전예방하기 위해 관경 600mm, 700mm, 800mm의 대형 하수관거를 선정하여 적절한 설계 하중을 산출하고 매립 심도별 안전성에 관한 연구를 수행하였다. 본 연구결과는 신형식 하수관거 기초의 유사연구에 널리 활용 될 수 있을 것이다.

Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system

  • Mahdi, Majid;Katebi, Hooshang
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.757-774
    • /
    • 2015
  • Reinforcing soils with the geosynthetics have been shown to be an effective method for improving the uplift capacity of granular soils. The pull-out resistance of the reinforcing elements is one of the most notable factors in increasing the uplift capacity. In this paper, a new reinforcing element including the elements (anchors) attached to the ordinary geogrid for increasing the pull-out resistance of the reinforcement, is used. Thus, the reinforcement consists of the geogrid and anchors with the cylindrical plastic elements attached to it, namely grid-anchors. A three-dimensional numerical study, employing the commercial finite difference software FLAC-3D, was performed to investigate the uplift capacity of the pipelines buried in sand reinforced with this system. The models were used to investigate the effect of the pipe diameter, burial depth, soil density, number of the reinforcement layers, width of the reinforcement layer, and the stiffness of geogrid and anchors on the uplift resistance of the sandy soils. The outcomes reveal that, due to a developed longer failure surface, inclusion of grid-anchor system in a soil deposit outstandingly increases the uplift capacity. Compared to the multilayer reinforcement, the single layer reinforcement was more effective in enhancing the uplift capacity. Moreover, the efficiency of the reinforcement layer inclusion for uplift resistance in loose sand is higher than dense sand. Besides, the efficiency of reinforcement layer inclusion for uplift resistance in lower embedment ratios is higher. In addition, by increasing the pipe diameter, the efficiency of the reinforcement layer inclusion will be lower. Results demonstrate that, for the pipes with an outer diameter of 50 mm, the grid-anchor system of reinforcing can increase the uplift capacity 2.18 times greater than that for an ordinary geogrid and 3.20 times greater than that for non-reinforced sand.

산업단지 고압매설배관 안전관리 향상방안 연구 (A Study on the Safety Management of High Pressure Underground Pipeline in Industrial Estate)

  • 최현웅;이동민;김진준
    • 한국가스학회지
    • /
    • 제22권5호
    • /
    • pp.100-106
    • /
    • 2018
  • 국내산업단지 내 고압 매설배관은 장기사용배관이 많고 독성 가연성 불활성 등 고압가스는 물론 다양한 유해화학물질이 한도로 내에 복잡하게 매설되어있어 다양한 타공사 등 사고 발생 시 인접하여 매설된 다른 배관에 손상을 미칠 수 있어 높은 수준의 안전관리가 요구되고 있다. 이에 본 연구에서는 고압가스매설배관과 도시가스매설배관 안전관리실태를 심층비교분석을 통하여 고압가스 매설배관의 효율적인 안전관리방식 도출에 활용하고자한다.

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.

동해안 사질지반에 시설된 인공어초 3종의 매몰 특성 (Settlement Characteristics of Three Type of Artificial Reefs on Sandy Bottom in the Eastern Coast of Korea)

  • 김대권;김완기;손용수;윤장택;공용근;김영대;이지현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.359-364
    • /
    • 2008
  • Using multi beam echo sounder, side scan sonar and scuba diving equipment, ceramic type, uneven type and semicircle-ramus type reefs into sandy bottom were ascertained, the depth of submersion in 7.2-10.3m on the coast of Gangneung, East of Korea, forty uneven type artificial reefs(AR) were totally buried into the sandy bottom. Two of five semicircle-ramus type ARs had only of their top area exposed. For most of the 45 ceramic reefs, only the upper 25-150cm of ARs were visible. The burial pattern is different in west and east side of the reefs, where the east side is deeply buried compared to the west side. From these results. it is recommended that sufficient analysis of bottom structure and materials especially in the sandy sea area should be undertaken in order to determine the best type of artificial reefs to be deployed and the best location for depoloyment.

지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구 (A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System)

  • 김형종;신석우;최길웅;최진주;신상열
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.