• Title/Summary/Keyword: buried contact

Search Result 59, Processing Time 0.02 seconds

Numerical Analysis for Comparing Beam-spring and Continuum Model for Buried Pipes Considering Soil-pipe Interaction (매설관과 지반의 상호작용을 고려한 보-스프링 모델과 연속체 모델의 수치해석적 비교 연구)

  • Jeonghun Yang;Youngjin Shin;Hangseok Choi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.15-24
    • /
    • 2023
  • The behavior of buried pipes is directly influenced by the nonlinearity and complex characteristics of the surrounding soil. However, the simplified beam-spring model, which ignores the nonlinearity and complex behavior of soil, is commonly used in practice. In response, several studies have employed continuum analysis methods to account for the nonlinear and complex behavior of the soil. This paper presents various numerical continuum analysis techniques and verifies their comparison with full-scale tests. The study found that reaction force results close to the full-scale test could be obtained by applying contact surface characteristics that take into account the interaction between the ground and the buried pipe. In the case of sharing pipe and soil node method and ignoring the interaction between pipe and soil, excessive reaction force was derived, and the failure shapes were different. In addition, this study applied the dynamic explicit analysis method, ALE method, and CEL method. It was confirmed that the displacement-reaction relationship and failure shape are similar to those of the static analysis.

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.

Analysis of Fault Current for the Electric Railway Grounding System (전기철도 접지시스템 혼용 운용시 고장전류 해석)

  • 창상훈;김주락;이형수;김정훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.704-711
    • /
    • 2000
  • This study is carried out using a circuit model approach. First, the self and shunt impedances of all the conductors in the rail system and the mutual impedances between different conductors are computed. Then, a circuit representing the both rail systems at interfaces including the rails, feeders, protection wires, contact wires, ground wires is built. Auto-transformers in the system are also represented in the circuit model. The circuit model is then 1]recessed using a circuit solver based on a double-elimination method. Several different scenarios are analyzed, including the load conditions and a few fault conditions with different fault locations. The effect of the buried ground wires is also analyzed by comparing the results with and without the presence of the ground wires. The analysis procedure presented in the paper demonstrated an accurate way of computing fault current distribution and EMC at interfaces between both systems. The results presented in the paper can be used as a reference for estimating interference levels in similar rail systems.

  • PDF

Comparison Analysis of Field Test Methods Based on Technical Criteria of Electrolytic Corrosion Protection in Urban Railway (도시철도 전식방지 기술기준에 따른 시험방법 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1885-1891
    • /
    • 2010
  • Recently metropolitan local governments is actively introducing urban railway's expand and light rail transit as a means of new transport system. DC electricity feeder system operating in the domestic urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is to be defined as a current flowing on a structure that is not part of the intended electrical circuit with respect to a given structure. Stray current is generally results from the leakage of return currents from large DC traction systems that are grounded or have a bad earth-insulated return path. At the place where the current leaves the rail and metallic structures, electrolytic corrosion may take place. This paper presents comparison analysis of field test methods based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems.

  • PDF

Fabrication and Characterization of Polycrystalline Silicon Solar Cells using Preferential Etching of Grain Boundaries (결정입계의 선택적 식각을 이용한 다결정 규소 태양전지의 제작과 특성)

  • Kim, Sang-Su;Kim, Cheol-Su;Lim, Dong-Gun;Kim, Do-Young;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1430-1432
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. To reduce these effects of the grain boundaries, we investigated various influencing factors such as preferential chemical etching of grain boundaries, grid design, transparent conductive thin film, and top metallization along grain boundaries. Pretreatment in $N_2$ atmosphere and gettering by $POCl_3$ and Al were performed to obtain polycrystalline silicon of the reduced defect density. Structural, electrical, and optical properties of solar cells were characterized. Improved conversion efficiencies of solar cell were obtained by a combination of Al diffusion into grain boundaries on rear side, fine grid finger, top Yb metal grid on Cr thin film of $200{\AA}$ and buried contact metallization along grain boundaries.

  • PDF

The Comparison Analysis of Field Test Cases on Technical Specifications of Electrolytic Corrosion in Urban Railway (국내 도시철도 전식방지 기술기준에 따른 시험사례 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.305-310
    • /
    • 2010
  • DC electricity feeder system operating in the urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is flowed on a structure that is not part of the intended electrical circuit with respect to a given structure. This paper presents comparison analysis of field test cases based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems. As a result of it, we confirmed that measurement methods are different from each other about the same tests. Therefore measurement methods to prevent electrolytic corrosion need to establish electrical facilities standards to be applied domestic.

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF

Potential Distribution near Concrete Pole According to the position of Ground Rod (접지봉 설치에 따른 전주 주변의 전위분포)

  • Lee, B.H.;Jung, H.U.;Choi, C.H.;Cho, S.C.;Baek, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • This paper describes ground surface potential rises and touch voltage. The more soil resistivity of upper layer is lower, the more ground surface potential rise is increased. Ground surface potential rise is increased as the buried depth of ground rod in lowered. Ground surface potential rises were measured in the test site and compared with results by CDEGS program. Touch voltages according to the separation distance of ground rod were measured in four directions. Touch voltages were remarkably changed by separation distance and contact position.

  • PDF

THE COMBINATION OF CHEMOMETRICS AND 2D NIR CORRELATION SPECTROSCOPY IN THE ANALYSIS OF DENATURATION PROCESS

  • Czarnik-Matusewicz, Boguslawa;Murayama, Koichi;Wu, Yuqing;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1286-1286
    • /
    • 2001
  • Despite extensive theoretical and experimental studies the structure of the protein-solvent interface is subject of many controversy. Understanding the processes that occur in aqueous solution requires understanding of the solvent influence on the structure of protein. The aim of this study is to investigate the applicability of NIR methods in the study of hydration phenomena in protein solutions. Temperature-induced changes in NIR spectra of -lactoglobulin (BLG) in aqueous solutions have been investigated by means of two-dimensional correlation spectroscopy (2DCOS) and principal component analysis (PCA). With the temperature increase the balance of forces between the BLG's interaction with itself and the BLGs interaction with its environment is disrupted leading to BLG unfolding. Significant differences of 2D signals and distinct discrepancies of loading on PC1 and PC2 were observed as a result of temperature increase. In the native folded conformation of BLC, most of the nonpolar amino acids are hidden in the centre of the structure, out of contact with water molecules, while charged groups are outside, in the contact with water. The polar groups promote low density Ih-type structure in the water outside this first hydration shell. When BLG unfolds it assumes a more extended configuration on which the previously buried nonpolar groups are exposed to water and promote the higher density II-type structure outside its first shell. Detailed assignments of bands attributed to the bulk water, different states of the hydrated water and the changed conformation of BLG are proposed.

  • PDF

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF