• Title/Summary/Keyword: buoyancy method

Search Result 200, Processing Time 0.023 seconds

Calibration Technique of Liquid Density Measurement using Magnetostriction Technology (자기 변형 기술을 이용한 액체 밀도 측정의 보정 기술)

  • Seo, Moogyo;Hong, Youngho;Choi, Inseoup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.178-184
    • /
    • 2014
  • In this study, we develop liquid density sensor by measuring of balanced position between gravity and bouyancy, corresponding to liquid density, using distance measuring by magnetostriction technology. For improvement of accuracy of liquid density sensor system. And we derive the related equation between liquid density and moving distance of density sensor, and make the calibration method for liquid density sensor by magnetostriction technology. Using fabricated liquid density sensing system and derived equation, have measured the density of several liquids. And compare it to measuring results using Oscillating U-tube type high accuracy density meter, having 0.000001 g/cc resolution. The deviation of results between two density measuring systems was less than 0.001 g/cc.

Development of a High Accuracy Pure Upwind Difference Scheme (고차 정확도의 순수 상류 차분법의 개발)

  • Cho Ji Ryong
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

A Numerical Analysis on the Heat Transfer Characterristics of Magnetic Fluid in a Rectangular Enclosure (자성유체의 밀폐공간내 열전달특성에 관한 수치적 연구)

  • Ryu Shin-Oh;Park Myung-Ho;Park Gil-Moon;Park Joung-Woo;Seo Lee-Soo;Chen Chel-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.37-43
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because a magnetic body force exists in an addition to gravity and buoyancy forces. In this paper, the natural convection of a magnetic fluids (W-40) in a rectangular enclosure is investigated by numerical and experimental methods. One side wall is kept at a constant temperature ($25^{\circ}C$), and the opposite side wall is also kept at a constant temperature ($20^{\circ}C$), Under above conditions, the magnitude of the magnetic fields were varied and applied. GSMAC scheme is used for the numerical method, and the thermo-sensitive liquid crystal film (R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental verification. This study has resulted in the following fact that the natural convection of a magnetic fluid is controlled by the direction and intensity of the magnetic fields.

Mercurous bromide $(Hg_2Br_2)$ crystal growth by physical vapor transport and characterization

  • Kim, S.K.;S.Y. Son;K.S. Song;Park, J.G.;Kim, G.T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.272-282
    • /
    • 2002
  • Mercurous bromide ($Hg_{2}0Br_{2}$) crystals hold promise for many acousto-optic and opto-electronic applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method. Due to the temperature gradient between the source and the growing crystal region, the buoyancy-driven convection may occur. The effects of thermal convection on the crystal growth rate was investigated in this study in a horizontal configuration for conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. The results showed that the growth rate increases linearly with Grashof number, and for 0.2 $\leq$ Ar (transport length-to-height, L/H)$\leq$1.0 sharply for Ar=5 and $\Delta$T=30 K. We have also shown that the magnitude of convection decreases with the Ar. For gravity levels of less than $10^{-2}$g the non-uniformity of interfacial distribution is negligible.

Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity (미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착)

  • Choi, Jae-Hyuk;Osamu, Fujita;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.

A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS (과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석)

  • Kang H.S.;Kim Y.S.;Chun H.G.;Song C.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses (기계식 一葉심장밸브의 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2090-2097
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monloleaflet heart valve prosthesis was analyzed taking into consideration of the impact between the valve occluder and the stopper. The motion of valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium conditions. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve occluder. The 4th order Runge-Kutta method was used to solve the equations. The results demonstrated that the occluder reaches steady eguilibrium position only after damped vibration. The mean damping ratio is in the range of 0.197-0.301. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 11-84Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational forces.

A Study on the Controller of Integration Smoke Control System (통합 제연시스템의 컨트롤러 개발에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.77-82
    • /
    • 2006
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable controller of integration smoke control was developed by establishing the specifications, algorithms and constructing engineering data. The development of controller for integration smoke control can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control from controller of integration smoke control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

A Study on the Improvement of Thermal Environment by a method using thermometers and computer simulations on the Atrium (실측 분석기법과 시뮬레이션 분석 기법에 의한 아트리움 열환경 개선에 관한 연구)

  • Lee, So-Yeun;An, Jung-Soo;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.28-34
    • /
    • 2009
  • The atrium in the building has many advantages including its aesthetic and functional effect. But the upper part of the atrium has the thermal problem of overheating due to insolation through the window. But natural ventilation aided buoyancy effect can be a solution to make comfortable indoor environment. Proper design of openings is very important to improve thermal environment in the atrium. In this study, thermal evaluations were performed to improve thermal environment in the atrium. Indoor thermal environment of an atrium at Seoul was measured in the field and simulated with Computational Fluid Dynamics( CFD) code. The turbulent flow model adopted is $K-{\varepsilon}$ model. The results of computer simulations are compared with the measurements at the point in the atrium. In order to improve the indoor ventilation environment of the atrium, thermal environment evaluations of six alternatives were conducted. After evaluations of the results, the design guidelines of an atrium are suggested.