• 제목/요약/키워드: bulk materials

검색결과 1,451건 처리시간 0.033초

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping (Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성)

  • Seon, Jeong-Woo;Cho, Jae-Hyeon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제35권4호
    • /
    • pp.407-411
    • /
    • 2022
  • Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

Microforming of Bulk Metallic Glasses : Constitutive Modelling and Applications (벌크비정질합금의 미세성형 : 구성모델과 적용)

  • 윤승채;백경호;김형섭
    • Transactions of Materials Processing
    • /
    • 제13권2호
    • /
    • pp.168-173
    • /
    • 2004
  • Microforming can be a good application for bulk metallic glasses. It is important to simulate the deformation behaviour of the bulk metallic glasses in a supercooled liquid region for manufacturing micromachine parts. For these purposes, a correct constitutive model which can reproduce viscosity results is essential for good predicting capability. In this paper, we studied deformation behaviour of the bulk metallic glasses using the finite element method in conjunction with the fictive stress constitutive model which can describe non-Newtonian as well as Newtonian behaviour. A combination of kinetic equation which describes the mechanical response of the bulk metallic glasses at a given temperature and evolution equations fur internal variables provide the constitutive equation of the fictive stress model. The internal variables are associated with fictive stress and relation time. The model has a modular structure and can be adjusted to describe a particular type of microforming process. Implementation of the model into the MARC software has shown its versatility and good predictive capability.

Recent Development of Bulk High-Tc Superconductors

  • Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 초전도 자성체
    • /
    • pp.88-95
    • /
    • 2002
  • Recent development in the field of RE-Ba-Cu-O (REBCO, RE: Y or rare earth elements) bulk high-Tc superconductors (HTS) is reviewed in the present paper. After the fatal weak link problem of sintered REBCO superconductors has been overcome by melt processing, this field has been greatly advanced during last ten years. The critical current density $J_c$ at 77 K has been enhanced by introducing effective flux pinning sites into the $REBa_2Cu_3O_y$ (RE123) superconducting matrix. Large melt-textured REBCO bulk crystals have been fabricated with the TSMG(top-seeded melt growth) technique. Mechanical properties of REBCO bulks have been improved by using the Ag additive or epoxy resin. Real bulk applications such as current lead, fault current limiter, flywheel energy storage system, magnetic field source, magnetic separation system, and etc., surely come true near future.

  • PDF

Densification of Al2O3 Nanopowder by Magnetic Pulsed Compaction and Their Properties (자기펄스 가압성형법에 의한 알루미나 나노분말의 치밀화 및 특성 평가)

  • Kang, R.C.;Lee, M.K.;Kim, W.W.;Rhee, C.K.;Hong, S.J.
    • Journal of Powder Materials
    • /
    • 제15권1호
    • /
    • pp.37-45
    • /
    • 2008
  • This article presents the challenges toward the successful consolidation of $Al_2O_3$ nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured $Al_2O_3$ bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of $Al_2O_3$ bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated $Al_2O_3$ bulk using magnetic pulsed compaction showed enhanced breakdown voltage.

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • 제23권3호
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

Large Glass-forming Ability and Magnetocaloric Effect in Gd55Co20Al23Si2 Bulk Metallic Glass

  • Li, Qian;Cai, Pingping;Shen, Baolong;Akihiro, Makino;Akihisa, Inoue
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.440-443
    • /
    • 2011
  • In this study, we investigated the glass-forming ability (GFA) and magnetocaloric effect (MCE) of $Gd_{55}Co_{20}Al_{23}Si_2$ bulk glassy alloy. It is found that the addition of 2 at% Si is effective for extension of the supercooled liquid region (${\Delta}T_x$), the ${\Delta}T_x$ is 55 K for the $Gd_{55}Co_{20}Al_{25}$ glassy alloy, and increases to 79 K for the $Gd_{55}Co_{20}Al_{23}Si_2$ alloy. As a result, $Gd_{55}Co_{20}Al_{23}Si_2$ glassy alloys with diameters up to 5 mm were successfully synthesized. The alloys also exhibit large MCE, i.e., the magnetic entropy change (${\Delta}S_m$) of 8.9 J $kg^{-1}\;K^{-1}$, the full width at half maximum of the ${\Delta}S_m$ (${\delta}T_{FWHM}$) of 87 K, and the refrigerant capacity (RC) of 774 J $kg^{-1}$.

Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders (고압비틀림 성형 공정에 의한 Al 분말의 초미세결정 벌크화 및 특성 평가)

  • Joo, Soo-Hyun;Yoon, Seung-Chae;Lee, Chong-Soo;Kim, Hyong-Seop
    • Journal of Powder Materials
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2010
  • Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • 제30권2호
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.