Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.440

Large Glass-forming Ability and Magnetocaloric Effect in Gd55Co20Al23Si2 Bulk Metallic Glass  

Li, Qian (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences)
Cai, Pingping (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences)
Shen, Baolong (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences)
Akihiro, Makino (Institute for Materials Research, Tohoku University)
Akihisa, Inoue (Institute for Materials Research, Tohoku University)
Publication Information
Abstract
In this study, we investigated the glass-forming ability (GFA) and magnetocaloric effect (MCE) of $Gd_{55}Co_{20}Al_{23}Si_2$ bulk glassy alloy. It is found that the addition of 2 at% Si is effective for extension of the supercooled liquid region (${\Delta}T_x$), the ${\Delta}T_x$ is 55 K for the $Gd_{55}Co_{20}Al_{25}$ glassy alloy, and increases to 79 K for the $Gd_{55}Co_{20}Al_{23}Si_2$ alloy. As a result, $Gd_{55}Co_{20}Al_{23}Si_2$ glassy alloys with diameters up to 5 mm were successfully synthesized. The alloys also exhibit large MCE, i.e., the magnetic entropy change (${\Delta}S_m$) of 8.9 J $kg^{-1}\;K^{-1}$, the full width at half maximum of the ${\Delta}S_m$ (${\delta}T_{FWHM}$) of 87 K, and the refrigerant capacity (RC) of 774 J $kg^{-1}$.
Keywords
Gd-based bulk glassy alloys; glass-forming ability; magnetocaloric effect; magnetic entropy change;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature 429, 853 (2004).   DOI   ScienceOn
2 J. Du, Q. Zheng, E. Bruck, K. H. J. Buschow, W. B. Cui, W. J. Feng, and Z. D. Zhang, J. Magn. Magn. Mater. 321, 413 (2009).   DOI   ScienceOn
3 O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).   DOI   ScienceOn
4 K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).   DOI   ScienceOn
5 Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 89, 081914 (2006).   DOI   ScienceOn
6 Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 90, 211903 (2007).   DOI   ScienceOn
7 F. X. Hu, B. G. Shen, and J. R. Sun, Appl. Phys. Lett. 76, 3460 (2000).   DOI   ScienceOn
8 F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001).   DOI   ScienceOn
9 H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).   DOI   ScienceOn
10 M. E. Wood and W. H. Potter, Cryogenics 25, 667 (1985).   DOI   ScienceOn
11 H. Fu, X. Y. Zhang, H. J. Yu, B. H. Teng, and X. T. Zu, Solid State Commun. 145, 15 (2008).   DOI   ScienceOn
12 J. Du, Q. Zheng, Y. B. Li, Q. Zhang, D. Li, and Z. D. Zhang, J. Appl. Phys. 103, 023918 (2008).   DOI   ScienceOn
13 L. Liang, X. Hui, Y. Wu, and G. L. Chen, J. Alloy. Compd. 457, 541 (2008).   DOI   ScienceOn
14 J. Guo, X. F. Bian, Q. G. Meng, Y. Zhao, S. H. Wang, C. D. Wang, and T. B. Li, Scripta Mater. 55, 1027 (2006).   DOI   ScienceOn
15 The Japan Institute of Metals, Metals Databook, Maruzen, Tokyo (2004) p.8.
16 S. J. Poon, G. J. Shiflet, F. Q. Guo, and V. Ponnambalam, J. Non-Cryst. Solids 317, 1 (2003).   DOI   ScienceOn
17 F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, The North-Holland Physics Publishing, Amsterdam (1989) p. 217.
18 K. A. Gschneidner and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).   DOI
19 V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).   DOI   ScienceOn