• Title/Summary/Keyword: bulk emulsion explosives

Search Result 13, Processing Time 0.028 seconds

A case study of large - long tunnel using the charging mechanization system of the bulk emulsion explosives (Bulk Emulsion 기계화 장전시스템을 이용한 대단면 장대터널 시공사례연구)

  • Yoon, Ji-Sun;Jang, Young-Min;Lee, Sang-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.107-115
    • /
    • 2009
  • Lately, the length of tunnel, the number of large-long tunnel over three lanes are steeply increased because of the request for high speed and straight road. Therefore, the maximization of excavation efficiency is needed in tunnel construction. Bulk Emulsion explosives charging system is the spearhead equipment using the radio remote control $&$ mechanization system compare with a traditional method Cartridge type. This study introduced the bulk emulsion explosives which is new method in tunnel blasting and verified the efficiency of bulk emulsion explosives for long-large tunnel. And we tried to compare Cartridge type efficiency with bulk emulsion explosives efficiency by the field test.

The Application of Gassed Bulk Emulsion to Quarry Blasting in Limestone Mine (석회석 광산 채석발파에서 Gassed Bulk Emulsion의 적용)

  • Min, Hyung-Dong;Jeong, Min-Su;Park, Yun-Seok;Lee, Eung-So;Lee, Won-Wook
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • Korean large limestone mines started to employ bulk emulsion explosives to improve the productivity in early 2000s. As the application of the bulk emulsion explosives became common in the mid 2000s, the bulk emulsion application increases overall performance but it tends to decrease the moving and heaving because it lacks in gas volume and heat energy. Therefore, the chemical gassing technique was introduced to improve the blasting efficiency of the existing bulk emulsion explosives. The chemical gassing is a technique to replacing GMB(Glass Micro Balloon), which is used for a sensitizer, with gassing agent to chemically sensitize it. This paper introduces the case of successful application of chemical gassing in a Korean large limestone mine. We also compared and evaluated the blast and work efficiency between bulk emulsion GMB & gassing agent (chemical gassing). The results indicate that the replacement of GMB with gassing agent improved fragmentation in the upper part and toe of a bench as well as moving efficiency of the material.

Blast Design Technique Using the Bulk Emulsion Explosives in Tunnel (터널에서 벌크에멀젼 폭약을 이용한 발파설계기법 연구)

  • Lee Jin-Moo;Lee Heoy;Lee Sang-Hun;Kim Hee-Do;Choi Sung-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • The demand of the bulk emulsion explosives is being increased more and more by using the mechanization loading system in a domestic tunnel sites. Thus, a rational design criteria that is suitable for rock and circumstance condition has been required. In this study, authors investigated a optimum specific charging weight and resonable charging weight based on domestic blasting construction cases, which were performed by using a mechanization bulk emulsion explosives loading system up to now. Authors also analyzed the blasting results and got the following formula $({\Upsilon}= 0.669 + (0.0154{\times}RMR),\;r=0.81)$ from the relationship between a optimum specific charging weight of bulk exp. and rock mass rating. A range of resonable charging weight with a drilling depth is calculated considering a rock conditions.

A Case Study of Application of the Bulk Emulite In Hard Rock Tunnel (터널용 벌크 폭약(New Emulite 1000)의 국내 경암 터널 시공사례 및 향후 발전 방향에 관한 연구)

  • 조영곤;이상돈;김희도
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.39-47
    • /
    • 2001
  • Bulk-Emulsion system은 미주나 서구 유럽 등지의 발파분야에 있어 선구적인 역할을 수행하여 왔던 나라에서는 이미 보편화된 시스템으로 ANFO 다음으로 노천이나 터널 굴진에 널리 적용되고 있다. Bulk-Emulsion system은 제조, 저장, 운반 및 사용에 있어서 극히 안전하고 장전밀도를 증가시켜 효과적인 파쇄와 굴진률 향상을 기대할 수 있으며 발파 후가스가 매우 양호한것을 비롯하여 기계화 장전에 따른 시공 능률 향상과 작업 안전성 강화 등 많은 장점을 가지고 있다. 본 연구에서는 고속도로 터널 현장에 국내 최초로 터널용 Bulk-Emulsion system을 이용하여 총 15회에 걸쳐 시험발파를 실시하였으며 이 결과를 토대로 하여 Bulk-Emulsion system 적용에 따른 효과와 문제점을 알아보고자 하였다.

  • PDF

A Construction Case Study Using the Newest Bulk Explosives & Comparison to the Ammonium Nitrate Fuel Oil(ANFO) and Emulsion Explosives (최신 벌크폭약의 시공사례와 적용성에 관한 연구)

  • 조영곤;김희도
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.29-40
    • /
    • 2000
  • Emulan은 ANFO와 bulk Emulsion(Emulite)의 흔합물로서 ANFO입자 사이의 공간은 내수성을 가진 Emulite로 채워지기 때문에 에너지와 밀도가 확실하게 증가하며 뛰어난 내수성을 가진다. 따라서 높은 장전밀도와 고 함유 에너지로 인하여 ANFO 대비 천공 미터당 암석 파쇄량을 40 %이상 증가시킬 수 있으며 저항선과 공간격을 각각 20%이상 증가시킬 수 있다. 특히, 습윤상태가 심한 장소에서 ANFO를 대신하여 가장 경제적인 폭약임이 확인되었다. 본 연구에서는 최신 Bulk-type의 폭약(Emulan)과 AFPO 및 Emulsion계 폭약을 각각 사용하여 현장의 적용성, 상호 발파효과 및 효율성과 경제성 비교를 통하여 앞으로의 대규모 노천현장이나 석산에서 보다 적절하게 사용할 수 있는 화약류에 대하여 알아보고자 하였다.

  • PDF

Case Studies and Future Prospect of Using Bulk Emulsion (에멀젼계 벌크폭약을 이용한 시공사례와 향후 전망)

  • Kim, Hee-Do;Choi, Sung-Hyun
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.64-76
    • /
    • 2008
  • Bulk Emulsion blasts using mechanized charging system, which is generally used in foreign countries, have recently introduced and gradually increased in Korea. The Bulk Emulsion are safe and able to increase the charging density for improvement of fragmentation and advancement especially in tunneling, and minimizing environmental problem. Because of less toxic gas generation, the explosives are called, namely ech-friendly products. There are two kinds of Bulk Emulsion; one is for open cut and the other is for tunneling. According to features of blast sites and its purpose, the compositions are different, but the principle is the same. In this study, trial blasts using Bulk Emulsion for tunneling had executed at 10 sites in Korea. The major result of the major job-sites is the following. First of all, compared with cartridge explosive, Bulk Emulsion was able to increase its charging density up to $35{\sim}60%$, to decrease the blast holes to approximately $10{\sim}30%$ down, and the advancement was improved up to $8{\sim}20%$ and also 30% up in its fragmentation. Toxic gas production after cartridge blasting showed 34.44ppm of its CO. Bulk Emulsion, however, showed 20.13ppm, which was 58.45% production of the cartridge explosive, and NOx was below 2ppm. The mechanized charging system of Bulk Emulsion should be applied to large sized tunnel blasting, long advanced tunnel which can secure the advancement of over $4{\sim}5m$, and the sites required finishing rapidly.

Underwater Blasting for Removing Todo Island in the Sea of Pusan Newport by Using Bulk Emulsion Explosives and Non-electric Detonators (벌크 에멀젼 폭약과 비전기뇌관을 이용한 부산신항 토도 제거 수중발파)

  • An, Bong-Do;Kim, Gab-Soo;Lee, Soo-Hyung;Jung, Byung-Youl;Lim, Dae-Kyu
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • Todo was an uninhabited island located in the sea of Pusan Newport. It was a small island with the height of 32 m above sea level, and its area including the submerged part was approximately 24,400 ㎡. Unfortunately, the island was located exactly in the middle of the narrow entrance way to the North and South Container Wharfs of Pusan Newport so that a number of ships had to turn quickly to avoid collision with the island, which frequently caused collisions with other ships or cranes. To avoid such a danger and make the water way wider and deeper, the Ministry of Oceans and Fisheries decided to remove the island. This was believed to make even super-large vessels operate safely in the sea of Pusan Newport so that the competitiveness of the port could be highly enhanced. This paper describes in detail the whole process of the removing work, which was the first case of successful underwater blasting operation using bulk emulsion explosives and non-electric detonators to remove a whole island in South Korea.

A Study on the Optimum Condition and GMB Addition in Emulsifying (에멀젼화의 퇴적조건과 예감제 첨가에 관한 연구)

  • 안명석;조명찬;김종현
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • The gelatine dynamite, which has been traditionally used in Korea as the 2nd generation explosive, is now being rapidly replaced by an emulsion explosive because of the change in life environment economic schemes, and safety reasons. However, there has been lack of study in the surfactant which is an important factor in manufacturing technology of emulsion explosives, and especially GMB technology has not been used in Korea. In this study, effective usage of surfactant with optimum dosage and optimum mixing temperature of GMB was investigated to increase safety and effectiveness.