• Title/Summary/Keyword: bulk deposition

Search Result 232, Processing Time 0.029 seconds

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Tension Tests of Copper Thin Films (구리박막 시험편의 인장시험)

  • Park, Kyung Jo;Kim, Chung Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.745-750
    • /
    • 2017
  • Tension tests for copper thin films with thickness of $12{\mu}m$ were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

Interaction of $HfCl_4$ with Two Hydroxyl's on Si (001) Surface: A First Principles Study ($HfCl_4$와 Si (001) 표면에 결합된 두 개의 수산화기와의 상호작용: 제일원리 연구)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • Density functional theory was used to investigate the adsorption and reaction of $HfCl_4$ with two hydroxyls on Si (001)-$2{\times}1$ surface in atomic layer deposition (ALD) process. We prepared a reasonable Si substrate which consisted of six inter-dimer dissociated $H_2O$ molecules and two intra-dimer dissociated $H_2O$ molecules. The $HfCl_4$must react with two hydroxyls to be a bulk-like structure. When $HfCl_4$ was adsorbed on a hydroxyl, there was energy benefit of -0.55 eV. Though there was energy loss for $HfCl_4$ to react with H of hydroxyl, thermal energy of ALD chamber would be enough to pass the energy barriers. There were five reaction pathways for $HfCl_4$ to react with two hydroxyls; inter-dimer, intra-dimer, cross-dimer, inter-row, and cross-row. Inter-row, inter-dimer and intra-dimer were relatively favorable among the five reaction pathways based on the energy difference. The electron densities between O and Hf in these three reactions were higher than the others and they had shorter Hf-O and O-O bond lengths than the other two reaction pathways.

  • PDF

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Elemental Composition of Authigenic Siderites in the Early Holocene Coastal Sediments, Western Coast of Korea and Their Depositional Implication (한국 서해 초기현세 퇴적물중 자생 능철석의 원소 성분과 퇴적학적 의미)

  • Cho, J.W.;Lim, D.I.
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.697-706
    • /
    • 2002
  • Authigenic siderite grains, ranging 100 to 250-${\mu}$m in diameter, are abundant in an about 8,600-year-old sediment layer in Namyang Bay, west coast of Korea. The siderites exhibit the aggregated spherulitic morphology with well-developed rhombs on the grain surfaces. They consist mostly of FeCO$_3$ (average, 65%) and MnCO$_3$ (average, 22%) with low Mg/Ca ratio (less than 0.4) in their bulk composition. A series of compositional ternary discrimination diagrams, together with high Mn and low Mg contents, show that only meteoric porewater was involved in siderite precipitation, assuming that depositional environment of host sediment is an organic-rich freshwater system. Considering a series of results such as radiocarbon age, authigenic Mn-rich siderite and lithological features, siderite-hosting sediment (unit Tl) is interpreted as freshwater swamp or bog deposition, infilling the topographic depressions that locally existed before the formation of mid-to-late Holocene tidal deposits. Center-to-margin compositional variation within individual grain is very systematic; Mn and Ca decrease towards the margin of a siderite grain, while Fe and Mg increase. It suggests that the spherulitic siderites were precipitated in this sedimentary layer in a series during the early diagenesis of MnOx-FeOx reduction under steady-state.

Growth of ZnO Film by an Ultrasonic Pyrolysis (초음파 열분해법를 이용한 ZnO 성장)

  • Kim, Gil-Young;Jung, Yeon-Sik;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • ZnO was deposited on sapphire single crystal substrate by an ultrasonic pyrolysis of Zinc Acetate Dehydrate (ZAH) with carrying Ar gas. Through Thermogravimetry-Differential Scanning Calorimetry(TG-DSC), zinc acetate dihydrate was identified to be dissolved into ZnO above $380^{\circ}C$. ZnO deposited at $380-700^{\circ}C$ showed polycrystalline structures with ZnO (101) and ZnO (002) diffraction peaks like bulk ZnO in XRD, and from which c-axis strain ${\Sigma}Z=0.2\%$ and compressive biaxial stress$\sigma=-0.907\;GPa$ was obtained for the ZnO deposited $400^{\circ}C$. Scanning electron microscope revealed that microstructures of the ZnO were dependent on the deposition temperature. ZnO grown below temperature $600^{\circ}C$ were aggregate consisting of zinc acetate and ZnO particles shaped with nanoblades. On the other hand the grain of the ZnO deposited at $700^{\circ}C$ showed a distorted hexagonal shape and was composed of many ultrafine ZnO powers of 10-25 nm in size. The formation of these ulrafine nm scale ZnO powers was explained by the model of random nucleation mechanism. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement.