• Title/Summary/Keyword: bulk density

Search Result 1,384, Processing Time 0.028 seconds

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

In vitro Study on the Functionality in Digestive Tract of Chitin and Chitosan from Crab Shell (게껍질 Chitin 및 Chitosan의 소화관내 기능성에 관한 in vitro 연구)

  • Chang, Hyun-Joo;Jeon, Dong-Won;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.348-354
    • /
    • 1994
  • Chitin and chitosan samples prepared from crab's shells under different conditions were compared for their physicochemical properties; and functionality in gastrointestinal tract by in vitro test. Their bulk density was in the range of $127{\sim}208\;mg/ml$, and their viscosity was $80{\sim}581\;cP$ in 0.1 chitin and $80{\sim}3,670\;cP$ in 0.5% chitosan solution, showing a wide variation. The degree of deacetylation in chitosan samples as determined by IR spectral analysis was relatively high, showing $81{\sim}93%$. At the same alkali concentration and reaction temperature, a longer reaction period gave an increased degree of deacetylation and lower viscosity. The water holding capacity of chitic substance became greater at higher soaking temperature; chitosan D at $37^{\circ}C$ showed the greatest value. Chitic substance with lower bulk density showed the higher water holding capacity. The retardation effect toward glucose absorption was higher in critic substances of lower density and higher water holding capacity; chitosan D showed the highest value of 38%. The retardation index toward bile acid absorption after 1 hour dialysis was $15{\sim}34%$ in chitic substances, 39% in pectin and 9% in cellulose. The retarding effect showed the highest value of 34% in chitosan D at 3% concentration.

  • PDF

Study on the Physical Properties of Artificial Soil for Tillage Experiments (경운실험(耕耘實驗)을 위(爲)한 인공토양(人工土壤)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kee-Dae;Hur, Yun-Kun;Kim, Man-Soo;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1978
  • For improvement and new design of tillage equipments, indoor test is very useful and more desirable than outdoor because the experiment of outdoor is very difficult and its cost is expensive. This study was carried out to determine the physical properties of artificial soil suitable for the indoor test with the soil bin manufactured at the workshop of the Dept. of Agricultural Machinery Engineering. The artificial soil being studied was made with very similarity to the natural soil of the experimental plots of Chungnam National University, and it consist of 39.35 percent, by weight of bentonite and 48.10 percent of sand with 12.55 percent of SAE 10W oil. The results are summarized as follows: 1. Bulk density increased with increasing number of rolling, and its relationship could be expressed. $y=1.073200+0.070780x-0.002263x^2$ where, y=bulk density ($g/cm^3$), x=number of rolling. These results could be explained that the effect of rolling velocity on the bulk density was not singnificant in the range of 4.5~10.4 em/sec. 2. The absolute soil hardness depended directly upon number of rolling, and their relationship could be expressed by the equation. $y=37.74(0.64 +0.17x-0.0054x^2)/(3.36-0.17x-0.0054x^2)^3$. where, y=absolute soil hardness($kg/cm^3$), x=number of rolling. 3. Relationship between the bulk density and absolute soil hardness could be expressed by the equation; $y=37.74(2.46x-2.02)/(6.02-2.46x)^3$. where, y=absolute soil hardness, x=bulk density. 4. The cohesion and the angle of internal friction of artificial soil were increased with increasing its bulk density. According to the cohesion and angle of internal friction, at the range of 1.60~1.75 ($g/cm^3$) of bulk density, this artificial soil was similar with sandy loam of 29.5% moisture content of natural soil. 5. Sliding-fricfion coefficient of steel plate on the artificial soil was 0.3~0.4 and rubber plate on it is 0.64~0.72. Those values were very similar with those of natural soil being studies by many others.

  • PDF

Effect of Mg content on the density and critical properties of in-situ reacted MgB2 bulk superconductor

  • Jun, Byung-Hyuk;Kim, Dan-Bi;Park, Soon-Dong;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • The effects of Mg content on the pore formation, density and critical properties were investigated in in-situ reacted $MgB_2$ superconductors. The $Mg_{1+x}B_2$, (x=-0.2, 0.0, 0.05, 0.3, 1.0) bulk samples with different Mg contents were heat-treated at $900^{\circ}C$ for 1 h in an Ar atmosphere. The dimensional changes of a pellet's mass and volume after heat-treatment were measured. After heat-treatment process, the sample mass was decreased by Mg evaporation, but the sample volume was expanded by pore formation at the Mg site; therefore, the apparent density was decreased. Spherical pores the same as Mg particles were developed after heat-treatment in all samples, and the pore density was increased with increasing Mg content. As the x of Mg content was increased to 1.0, the apparent density of $Mg_{1+x}B_2$ samples was decreased due to a relatively larger reduction in a mass change. The critical current density of Mg excessive sample of x=0.05 showed the highest values over the applied magnetic fields because the excessive Mg may compensate Mg loss and enhance grain connectivity.

Physical Properties of Rapeseed (I) (유채 종자의 물리적 특성(I))

  • Duc, L.A.;Han, J.W.;Hong, S.J.;Choi, H.S.;Kim, Y.H.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.101-105
    • /
    • 2008
  • Some physical properties of rapeseed such as geometric properties (linear dimensions, sphericity, seed volume, surface area) and gravimetric properties (the mass of one thousand seeds, bulk density) were analyzed at five levels of moisture content of 10.03, 14.91, 20.07, 25.06 and 30.12% (w.b.). The physical properties of rapeseed were evaluated as a function of seed moisture content. In the moisture range, when the moisture content increase, sphericity decreased from 0.946 to 0.927, and geometric mean diameter, seed volume and surface area increased from 2.17 to 2.31 mm, 5.58 to $6.88 \;mm^3$ and 14.76 to $16.77\;mm^2$ respectively. Mass of one thousand seeds increased from 5.04 to 6.46 g. Bulk density decreased from 579.3 to $549.2\;kg/m^3$ due to swelling of the seed.

Wood Quality of Populus nigra × maxmowiczii. (I) - Variation of Bulk Density, Wood Fiber Dimension, Microfibril Angle, and Number of Leaf Knot within Stem - (양황철나무의 재질(材質) (I) 용적밀도수(容積密度數), 목섬유(木纖維)치수 및 잎옹이 분포수(分布數)의 간내변수(幹內變數) -)

  • Park, Sang-Jin;Kang, Sun-Gu;Lee, Ki-Yeong;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1990
  • To study the wood quality factors of Populus nigra $\times$ maxmowiczii known a rapidly growing species, the variations of green moisture contents, bulk density, wood fibre dimensions, microfibril angles, and number of leaf knot in stem wood were investigated. The heartwood contained a higher moisture content than the corresponding sapwood. Bulk density in radial patterns variations decrease outward from the pith, then increase toward the bark. The wood-fiber length and diameters had somewhat smaller values than on Populus alba $\times$ glandulosa or Populus euramericana. The microfibril angles decreased rapidly toward the outside, and their mean values were about 16 degree. The grain angles run nearly parallel to the cell axies. Number of leaf knot showed a fluctural change above ground level to a point near the base of the crown and then increased rapidly to the top of tree and average number of leaf knot varied exclusively from tree to tree.

  • PDF

The Mechanical Properties of Scoured Fabrics Under Various Conditions (가호조건에 따른 정련포의 물성변화)

  • Park, Myung-Soo
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • Three kinds of 135D/108F ITY were produced from raw yam 85D/72F + SDY 50D/36F with. interlacing pressure $1.5kg/cm^2$, $2.5kg/cm^2$, $3.5kg/cm^2$ respectively. 72 kinds of sized yams were manufactured from three ITYs by altering sizing speed, sizing temperature and sizing tension. The mechanical characteristics of 72 kinds of plain fabrics which were woven using the sized yam as a warp were analyzed after scouring. The initial modulus of scoured fabric responded sensitively to the sizing speed in high tension. The WT of scoured fabric recorded the. highest1n the conditions of sizing tension 30g, and air pressure $2.5kg/cm^2$ in interlacing treatment. When sizing temperature was high, the WT value appeared low, but when sizing speed was high, the WT value was much affected by air pressure in interlacing raw yam. The MIU value of fabric according to sizing tension variations increased up to sizing tension 40g, but decreased above it. The bulk density decreased up to sizing tension 30-40g, but increased above it. In addition, the bulk density decreased as sizing temperature increased.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process (Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성)

  • Lee, Ji-Hye;Kim, Ji-Won;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.