• Title/Summary/Keyword: bulk density

Search Result 1,382, Processing Time 0.027 seconds

Functional component analysis and physical property of Cheonnyuncho (Opuntia humifusa) powder (천년초 분말의 기능성분 분석과 물리적 특성 연구)

  • Shin, Dong-Sun;Han, Gwi-Jung;Oh, Se-Gwan;Park, Hye-Young
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.838-844
    • /
    • 2015
  • The purpose of this study was to perform a functional components analysis and investigate the physical properties of powders made from the stems or fruit of freeze-dried Cheonnyuncho cactus (Opuntia humifusa). The functional components analysis showed that the stem and fruit powders han vitamin C levels of 42.14 mg and 105.21 mg, respectively. The stems powder contained more lutein than the fruit powder. The fruit powder contained more vitamin C than the stem powder. The SDF (soluble dietary fiber) and IDF (insoluble dietary fiber) in the stem powder were 45.24% and 22.15%, respectively, which were higher then the values for the fruit powder. The stem and fruit powders contained 19.30 mg/g and 25.10 mg/g of crude saponin, respectively. The pH of the stem and fruit powders was 5.34 and 5.07, respectively, both indicating low acidity. The L, a and b values of the stem powder color were 78.28, -3.71, and 19.19, respectively. The L, a and b values of the fruit powder color were 55.56, 24.84, and -3.18, respectively. The stems powder had a higher bulk density, water holding capacity, and swelling power than those of the fruit powder, but water-retaining capacity of the stem powder was lower than that of the fruit powder. In addition, the stems powder had a higher viscous material content and water uptake compared to the fruit powder. Based on the above results, we determined that Cheonnyuncho (Opuntia humifusa) powder had potentially useful functional components and physical properties.

Water Transport Characteristics of Paddy Plow Pan Soils as Estimated by Particle Size Distribution Fractal Dimension (토양입자분포 프랙탈차원을 활용한 논토양 쟁기바닥층 물이동 추정)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Hur, Seung-Oh;Ha, Sang-Geun;Cho, Hee-Rae;Jeon, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate plow pan characteristics and to grasp the relationship between its particle size distribution fractal dimension ($D_m$) and water transport in paddy plow pan. Twenty four soil sampling sites with different management groups, ordinary and sandy-textured, were selected and investigated for physical properties of soils such as Yamanaka hardness in April, non-submerged condition, before rice seedling transplanting. The plow pan appearing depth and thickness was determined by penetration resistance profile. Undisturbed core samples with five replicates were sampled at plow pan layerwith 2 inch cores for measuring soil bulk density and saturated hydraulic conductivity. The particle size distribution fractal dimension ($D_m$) was calculated by the method following the procedure Tylerand Wheacraft (1992), using the USDA-based particle size analysis datawith fractions of 0-0.002, 0.002-0.053, 0.053-0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, and 1.0-2.0 mm. The plow pan of investigated fields appeared at a range from 5 to 30 cm depth, showing minimum value in sandy-textured management group and maximum value in ordinary management group. The thickness of plow pan were distributed from 5 to 17 cm, showing both minimum and maximum values in sandy-textured management group. Averagely, the plow appearing depth were deeper in ordinary management group than in sandy-textured management group, whereas the reverse in the thickness of plow pan. The particle size distribution fractal dimension ($D_m$) had higher value with finer textures, with higher fractality in coarser texture. Saturated hydraulic conductivities, $K_s$, of plow pan soils distributed from 0.5 to 1420 mm $day^{-1}$, having the highest value in sandy skeletal soils. The $K_s$ decreased with decreasing clay content and $D_m$, showing power function relationships. The coefficient of determination, $R^2$, of the fitted power functions were higher in $D_m$ as x-axis than in clay content. This means that $D_m$ could give us more effective estimation than clay content. Especially, sandy-textured paddy soils had higher $R^2$, compared to ordinary paddy soils. $K_s$ of relatively coarse-textured soils with less than 18%of clay content, therefore, was more dependent on particle size distribution than that of relatively fine-textured soils. From these results, it could be concluded that the fractal scaling gives us a unique quantity describing particle size distribution and then can be applied to estimate saturated hydraulic conductivity, especially more effective in coarse-textured soils.

Effect of Different Soil Managements on Physical Properties and Microbial Activities in Citrus Orchard Soil (초생재배가 감귤원 토양의 물리성과 미생물 활성에 미치는 영향)

  • Joa , Jae-Ho;Lee , Jong-Hee;Won , Hung-Yon;Han , Seung-Gap;Lim , Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.279-284
    • /
    • 2008
  • This study was performed to investigate effect of different soil managements on physical properties and microbial activities in volcanic ash citrus orchard soil. Experiment plots had managed to control weeds on soil for 4 years with clean cultivation (CCM) used with herbicide, natural sod cultivation (NSCM), kentucky blue grass sod cultivation (KBG). Soil samples were taken on October, in both 1998 and 2000 from 3 experimental plots. In NSCM, Soil hardness was lower at 11.8 mm than in CCM. And water stable Aggregation coefficient(>0.5 mm) was high at 26.7% compared with CCM. Soil bulk density and porosity showed no significant among the treatments. Soil acid phosphatase was high in sod cultivation plots and the amount of microbial biomass C was about twice higher at $525.4mg\;kg^{-1}$ in KBG than in CCM. Conclusionally, Sod cultivation improved soil physical properties such as aggregation, hardness and increased microbial activities compared with clean cultivation in citrus orchard soil. Soil total PLFA, acid phosphatase, and microbial biomass C contents were investigated on May in nonvolcanic ash citrus soil. Soil samples were collected at 5 sites each; convention cultivation grown with herbicide, natural sod cultivation grown with 1/2 chemicals, organic cultivation. That sites have been managed for 5 years over. PLFA contents were two times higher at $112.2n\;mol\;g^{-1}$ in organic cultivation than in convention cultivation. According to the PLFA indicator, Gram negative bacteria and actinomycetes in organic cultivation were high compared with convention cultivation, which were at 15.1%, 6.6%, respectively. Soil microbial biomass C contents was about twice higher in organic cultivation than in convention cultivation. Soil acid phosphatase was high at 17.6% in organic cultivation compared with convention cultivation.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Framework on Soil Quality Indicator Selection and Assessment for the Sustainable Soil Management (지속가능한 토양환경 관리를 위한 토양질 지표의 선정과 평가체계)

  • Ok, Yong-Sik;Yang, Jae-E.;Park, Yong-Ha;Jung, Yeong-Sang;Yoo, Kyung-Yoal;Park, Chol-Soo
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.93-111
    • /
    • 2005
  • Defining soil quality in scopes and applications is one of the prerequisite for the sustainable management of soil environment to orient researches, strategies and policies. However, definition of soil quality is controversial depending upon a viewpoint of soil science or soil environment. Soil quality can be, irrespective of the disciplines, defined as the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality and promote plant and animal health. Common to all of the soil quality concepts can be summarized as the capacity of soil to function effectively at present and in the future. The OECD includes soil quality as one of the agri-environment indicators. This article intends to i) summarize the current soil quality research, and ii) provide information on protocol of soil quality assessment. A framework for soil quality was divided into three steps: indicator selection as minimum data set (MDS), scoring of the selected indicators, and integration of scores into soil quality index. Korean government suggested possible physical and chemical indicators such as bulk density and organic matter for paddy and upland soils to OECD. The framework of soil quality assessment is not yet implemented in Korea. Countries such as USA, Canada and New Zealand have constructed the framework on soil quality assessment and developed a user-friendly version of soil quality assessment tools to evaluate the integrated effects of various soil management practices. The protocol provided in this review might help policymakers, scientists, and administrators improve awareness about soil quality and understand the way of soil environment management.

  • PDF

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons (토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구)

  • Han, Seung Hyun;Yoon, Tae Kyung;Han, Saerom;Yun, Soon Jin;Lee, Sun Jeoung;Kim, Seoungjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

Development of n Hydroponic Technique for Fruit Vegetables Using Synthetic Fiber Medium (합성섬유 배지를 이용한 과채류 수경재배 기술 개발)

  • Hwang Yeon-Hyeon;Yoon Hae-Suk;An Chul-Geon;Hwang Hae-Jun;Rho Chi-Woong;Jeong Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.106-113
    • /
    • 2005
  • This study was carried out to develop a novel hydroponic medium far fruit vegetable crops by using waste synthetic fibers. In physical analysis of the synthetic fiber medium (SFM), the bulk density and percent solid phase were lower, while the porosity and water content were greater in comparison with the rockwool slab. The SFM had pH of 6.5 and EC of $0.03dS{\cdot}m^{-1}$ both of which are similar to those of the rockwool slab. The CEC of 0.39me/100mL of the SFM was lower than compared with 3.29me/100mL of the rockwool slab. However, concentrations K, Ca, Mg and Na were slightly higher in the SFM than those in the rockwool slab. The 'Momotaro' tomato crop in the SFM gave comparable plant height, stem diameter, days to first flowering, fruit weight and percent marketable yield as the rockwool slab. In the SFM and in the rockwool slab, mean fiuit weight were 182g and 181g, percent marketable yield were $93.8\%$ and $92.0\%$, respectively. The marketable yield per 10a in the SFM was 12,799 kg, which was $97\%$ of that in the rockwool slab. Growth parameters such as leaf length and width, leaf number, stem diameter and chlorophyll content of an exportable cucumber crop grown in the SFM and the rockwool slab were not different. Fruit weight was greater in the rockwool slab, while percent marketable yield was greater in the SFM. The marketable fruit yield per 10a of 5,062kg in the SFM was $2\%$ greater than that in the rockwool slab. $NO_3$ concentration in nutrient solution during the crop cultivation was higher in the SFM than in the rockwool slab, while concentrations $NH_4$, K, Ca, Mg and $SO_4$ were not different between the two media.

Effect of Milk Vetch Utilization Rice Cultivation to Reduce Application Amount of Nitrogen at Plowing Time in Paddy Field (자운영 후작(後作) 벼 재배시(栽培時) 경운시기별(耕耘時期別) 질소시비량(窒素施肥量) 절감효과(節減效果))

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Kang, Seung-Won;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.352-360
    • /
    • 2002
  • This study was carried out to find out the effect of Milk vetch(Astragalus sinicus L.) on growth, and yield of rice, physicochemical properties of soil, reduction rate of nitrogen fertilization, and soil improvement under the different plowing time with Milk vetch cultivated in paddy field, plowing at maximum blooming, last blooming, fruiting stages. The fresh weight of Milk vetch at each plowing time of maximum blooming, last blooming and fruiting stage was 22,500, 20,000, $12,500kg\;ha^{-1}$ respectively. Content of total nitrogen at three plowing times was 2.95, 2.66, and 2.47% and the C/N ratio were 15.7, 18.0, and 19.2, respectively. Physico-chemical properties of soil were improved in cultivated milk vetch, the content of T-N. OM and porosity ratio were increased while the content of $P_2O_5$ and bulk density, solidphase ratio were decreased compared to noncultivated milk vetch. Content of $NH_4-N$ in soil was highest plowing at maximum blooming stage and appeared an increasing tendency according to increased nitrogen level. Amount of nitrogen fertilizer by rice was highest plowing at maximum blooming stage and appeared an increasing tendency according to increased nitrogen level. Nitrogen-use efficiency was high in $33kg\;ha^{-1}$ nitrogen level at three plowing times. The number of spikelets per $m^2$ was high in plowing at maximum blooming stage, last blooming stage and the percentage of ripeness was high in fruiting stage of milk vetch. So the rice yield was increased 9%, 8% in $55kg\;ha^{-1}$ nitrogen level plowing at maximum blooming stage, last blooming stage and 1% in $77kg\;ha^{-1}$ nitrogen level plowing at fruiting stage compared to conventional cultivation.

The Change of Physico-Chemical Properties of Paddy Soil in Reclaimed Tidal Land (간척지 논토양의 물리화학성 변동에 관한 연구)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Jung, Ji-Ho;Kim, Byeong-Su;Park, Woo-Kyun;Ryu, Jin-Hee;Kim, Taek-kyum;Kim, Jae-Duk;Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.94-102
    • /
    • 2008
  • The physico-chemical properties of ten reclaimed saline soils in five soil series of west-south Korea were analyzed according to the years past after reclamation. The soil samples were collected at the same sites two times in 2000 and 2004. The physico-chemical properties in 2000 had been changed in 2004 as follows. Soil salinity was the highest in Podu and desalinization period was the shortest in Munpo and Yeompo. Seasonal ground water level were above 100 cm in all regions that were 30 years old reclaimed tidal land, which was the same results of normal paddy field. In the case of soil physical changes, bulk density increased in fine textured soil (Poseung and Podu) but decreased in coarse textured soil (Gwanghwal, Munpo, and Yeompo). Porosity decreased in fine textured soil(Poseung and Podu) but increased in coarse textured soil. These reason were as follows. Fine textured soil were increased in solid phase but decreased in liquid and gaseous phase. Coarse textured soil, Gwanghwal and Munpo except for Yempo, were increased in gaseous phase but decreased in solid and liquid phase. Yempo that have low water table level were increased in liquid phase but decreased in solid and gaseous phase. Soil hardness increased in 4 soil series except for Munpo. In the case of chemical property changes, although there were more or less difference, it showed decreasing tendencies. Soil pH, the content of organic matter, available phosphate, and available silicate of five soil series were decreased during the four years. The content of exchangeable cation also decreased except for magnesium.

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.