Water Transport Characteristics of Paddy Plow Pan Soils as Estimated by Particle Size Distribution Fractal Dimension

토양입자분포 프랙탈차원을 활용한 논토양 쟁기바닥층 물이동 추정

  • 한경화 (농촌진흥청 국립농업과학원) ;
  • 조현준 (농촌진흥청 식량과학원) ;
  • 허승오 (농촌진흥청 국립농업과학원) ;
  • 하상건 (농촌진흥청 국립농업과학원) ;
  • 조희래 (농촌진흥청 국립농업과학원) ;
  • 전상호 (농촌진흥청 국립농업과학원)
  • Received : 2010.01.29
  • Accepted : 2010.02.10
  • Published : 2010.02.28

Abstract

This study was carried out to investigate plow pan characteristics and to grasp the relationship between its particle size distribution fractal dimension ($D_m$) and water transport in paddy plow pan. Twenty four soil sampling sites with different management groups, ordinary and sandy-textured, were selected and investigated for physical properties of soils such as Yamanaka hardness in April, non-submerged condition, before rice seedling transplanting. The plow pan appearing depth and thickness was determined by penetration resistance profile. Undisturbed core samples with five replicates were sampled at plow pan layerwith 2 inch cores for measuring soil bulk density and saturated hydraulic conductivity. The particle size distribution fractal dimension ($D_m$) was calculated by the method following the procedure Tylerand Wheacraft (1992), using the USDA-based particle size analysis datawith fractions of 0-0.002, 0.002-0.053, 0.053-0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, and 1.0-2.0 mm. The plow pan of investigated fields appeared at a range from 5 to 30 cm depth, showing minimum value in sandy-textured management group and maximum value in ordinary management group. The thickness of plow pan were distributed from 5 to 17 cm, showing both minimum and maximum values in sandy-textured management group. Averagely, the plow appearing depth were deeper in ordinary management group than in sandy-textured management group, whereas the reverse in the thickness of plow pan. The particle size distribution fractal dimension ($D_m$) had higher value with finer textures, with higher fractality in coarser texture. Saturated hydraulic conductivities, $K_s$, of plow pan soils distributed from 0.5 to 1420 mm $day^{-1}$, having the highest value in sandy skeletal soils. The $K_s$ decreased with decreasing clay content and $D_m$, showing power function relationships. The coefficient of determination, $R^2$, of the fitted power functions were higher in $D_m$ as x-axis than in clay content. This means that $D_m$ could give us more effective estimation than clay content. Especially, sandy-textured paddy soils had higher $R^2$, compared to ordinary paddy soils. $K_s$ of relatively coarse-textured soils with less than 18%of clay content, therefore, was more dependent on particle size distribution than that of relatively fine-textured soils. From these results, it could be concluded that the fractal scaling gives us a unique quantity describing particle size distribution and then can be applied to estimate saturated hydraulic conductivity, especially more effective in coarse-textured soils.

본 연구는 논토양 쟁기바닥층을 대상으로 특성을 파악하고 토양입자분포를 프랙탈차원화하여 물이동을 추정하고자 수행하였다. 모내기전 비담수기에 보통논과 사질논 12지점을 각각 선정하였다. 선정지점에서 깊이별 관입경도를 측정하여 쟁기바닥층 출현깊이와 두께를 도출하였다. 표토와 쟁기바닥층에서 토양입자분포, 유기물함량, 산중식 경도를, 쟁기바닥층에서 2인치 코아시료를 채취한 후 변수위법으로 포화수리전도도를 측정하였다. 토양입자분포의 프랙탈 차원화는 측정한 입자분포자료, 0-0.002, 0.002-0.053, 0.053-0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, 1.0-2.0 mm의 함량을 활용하여 Tyler와 Wheatcraft (1992)의 방법을 따랐다. 조사한 연구지점의 쟁기바닥층 출현깊이는 5-30 cm, 두께는 5-17 cm로 분포하였으며 보통논이 사질논보다 평균적으로 출현깊이가 깊고 두께는 얇은 것으로 나타났다. 또한 보통논은 점토함량이 18%이상으로 상대적으로 세립질 토성을, 사질논은 18%이하로 조립질 토성을 나타내었다. 토양입자분포의 프랙탈차원 ($D_m$)은 세립질 토성일수록 높은 값을 나타내었으며 조립질토양에서 더 높은 프랙탈성을 나타내었다. 포화수리전도도는 0.5-1420 mm $day^{-1}$로 분포하였으며 사력질 사질논에서 가장 높은 값을 나타내었다. 포화수리전도도는 점토함량과 $D_m$이 증가함에 따라 감소하는 경향이 나타났으며 멱함수의 형태를 나타내었다. 점토함량보다 $D_m$을 독립변수로 사용했을시, 적합된 멱함수의 결정계수가 높았으며 특히 사질논이 보통논보다 결정계수가 높게 나타났다. 따라서 본 연구는 토양입자분포를 프랙탈 차원화를 통해 단일 값으로 표현하여 포화수리전도도 등의 물이동 특성 추정에 활용할 수 있다고 보여준다 할 수 있다. 특히 조립질 토성을 가진 논토양의 물이동 추정에 유용할 것으로 판단할 수 있었다.

Keywords

References

  1. Ersahin, S., H. Gunal, T. Kutlu, B. Yetgin, and S. Coban. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma. https://doi.org/10.1016/j.geoderma.2006.04.014
  2. FFTC. 1989. Classification and management of rice growing soil. Proceedings of the fifth international soil management workshop held in .Wufeng, Taishung, Taiwan in December 11-23, 1988. FFTC book series No. 39.
  3. Jeon, W. T., C. Y. Park, K. D. Park, Y. S. Cho, J. S. Lee, and D. S. Lee. 2002. Changes of soil characteristics, rice growth, and lodging traits by different fertilization and drainage system in paddy soil. Korean J. Soil Sci. Fert 35(3) : 153-161.
  4. Klute, A. 1986. Methods of soil analysis: Part 1. physical and mineralogical methods. Amer. Soc. Agron. Inc. Madison USA.
  5. Mandelbrot. 1993. The fractal geometry of nature. Freeman, New York.
  6. Millan, H., M. Gonzalez-Posada,M. Aguilar, J. Dominguez, and L. Cespedes. 2003. On the fractal scaling of soil data. Particle-size distribution. Geoderma 117:117-128. https://doi.org/10.1016/S0016-7061(03)00138-1
  7. Mishra, S., J. C. Parker, and N. Singhal. 1989. Estimation of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrol. 108:1-18. https://doi.org/10.1016/0022-1694(89)90275-8
  8. NIAST. 2000. Method of soil and plant analysis. Published by National Institute of Agricultural Science & Technology. Suwon, Korea.
  9. Oh, J. S., K. S. You, and Y. H. Shin. 1974. Studies on percolation rate on main paddy soils. Res. Rept. RDA (S & F) 16: 27-34.
  10. Kyuma. 2004. Paddy soil science. Kyoto University Press and Trans Pacific Press.
  11. Tyler, S.W., and S.W. Wheatcraft. 1992. Fractal scaling of soil particle-size distribution: Analysis and limitations. Soil Sci. Soc. Am. J. 56:362-369. https://doi.org/10.2136/sssaj1992.03615995005600020005x
  12. White, R. E. 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci. 3:95-120. https://doi.org/10.1007/978-1-4612-5090-6_3
  13. Xu Qui, Y. C. Lu, Y. C. Liu, and H. G. Zhu. 1980. The paddy soil of Tai-Ku region of China Nanjing. Institute of soil science, Academica Sinica, Mainland China.
  14. Yoo, S. H., G. H. Han, B. S. Bae, and M. E. Park. 1999. Monitoring water content and electrical conductivity in paddy soil profile by time domain reflectometry. Korean J. Soil Sci. Fert 32(4) : 364-374.