• Title/Summary/Keyword: building-construction algorithm

Search Result 275, Processing Time 0.027 seconds

An Algorithm for Scheduling Repetitive Projects with Resource Continuity and Different Batch Sizes

  • Shim, Euysup;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.565-578
    • /
    • 2013
  • Batch production is common in repetitive construction projects, and it is not unusual for different batch sizes to be used by contractors in one project. While several scheduling methods, such as the Linear Scheduling Method (LSM) and the Repetitive Scheduling Method (RSM) have been proposed and used, no mathematical method for repetitive construction projects has been developed, and it is difficult to consider different batch sizes with the existing methods. An original mathematical algorithm for scheduling repetitive projects with different batch sizes is proposed in this study. This algorithm is illustrated with assumptions of resource continuity and single path in a project and introduces new terms, control batch and critical batch. The algorithm logics and mathematical equations are validated by comparison with the outcomes from a graphical scheduling approach through a simple and practical hypothetic project. As a result, it is expected that the proposed algorithm can be easily adapted and extended to computer software for scheduling, and can be a starting point for research on batch size management in repetitive construction projects.

Automatic Arrangement Algorithm for Tower Cranes Used in High-rise Apartment Buildings

  • Lim, Chae-Yeon;Kim, Sun-Kuk;Seo, Deok-Seok;Son, Ki-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.358-368
    • /
    • 2012
  • On most construction sites, the arrangement of tower cranes is decided by site engineers based on their own experience, which can cause cost overruns and delays in the lifting work. Although many researchers have conducted studies on tower crane arrangement using computer modeling and knowledge-based expert systems as well as mathematical models, no research has aimed to develop an algorithm to identify an optimum solution among several alternatives for installation areas of tower cranes satisfying the conditions of lifting work. The objective of this study is to develop an automatic arrangement algorithm for tower cranes used in high-rise apartment construction. First, as a new concept, a possible installation area of tower cranes was suggested. Second, after proposing several alternatives based on the installation points suggested in this study, an algorithm analyzing the economic feasibility of tower cranes was developed considering the rental, installation and removal costs. Third, a case study was conducted to prove the validity of the developed algorithm for selecting and installing an effective set of tower cranes at minimum cost.

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri;Swarup K. Barman
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.

Improvement of Building-Construction Algorithm for Using GIS data and Analysis of Flow and Dispersion around Buildings (GIS 자료사용을 위한 건물 구축 알고리즘 개선 및 건물 주변 흐름과 확산 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.731-742
    • /
    • 2014
  • In this study, we developed a new algorithm which can construct model buildings used as a surface boundary in numerical models using GIS with latitudinal and longitudinal information of building vertices. The algorithm established the outer boundary of a building first, by finding segments passing neighboring two vertices of the building and connecting the segments. Then, the algorithm determined the region inside the outer boundary as the building. The new algorithm overcame the limit that the algorithm developed in the previous study had in constructing concave buildings. In addition, the new algorithm successfully constructed a building with complicated shape. To investigate effects of the modification in building shape caused by the building-construction algorithm on flows and pollutant dispersion around buildings, a computational fluid dynamics model was used and three kinds of building type were considered. In the downwind region, patterns in flow and pollutant dispersion were little affected by the modification in building shape caused. However, because of reduction in air space resulted from the building-shape modification, vortex structure was not resolved or smaller vortex was resolved near the buildings. The changes in flow pattern affected dispersion patterns of scalar pollutants emitted around the buildings.

A FRAMEWORK FOR SIMULATING CONSTRUCTION PROCESSES FOR OPTIMIZING THE FLOOR CONSTRUCTION CYCLE USING BIM

  • Seung-Jun Ahn;Hyun-Soo Lee;Moonseo Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.835-840
    • /
    • 2009
  • Lately, Building Information Modeling (BIM) emerges as the most promising technology, now is expected to bring a great deal of improvement of productivity in every aspect of the construction industry. One of the BIM based scheduling is to use BIM model as a base for applying to schedule analysis and simulation tools. This type of tools may incorporate a various types of information such as the building model, construction method information, resource information, productivity information, rules and constraints to optimize activity sequencing. This paper proposes a framework of BIM based simulating system which can be used to optimize construction processes, especially for the floor construction cycle. For the purpose, all of the necessary components of the system will be defined and represented, and next an algorithm will be introduced to demonstrate the principle of simulating operation. The benefits of this technique are basically two : to test and optimize construction methods in respect of the construction duration and to reduce the floor construction cycle.

  • PDF

A Study on Optimization Model of Time-Cost Trade-off Analysisusing Particle Swarm Optimization (Particle Swarm Optimization을 이용한 공기-비용 절충관계 최적화 모델에 관한 연구)

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.91-98
    • /
    • 2008
  • It is time-consuming and difficulty to solve the time-cost trade-off problems, as there are trade-offs between time and cost to complete the activities in construction projects and this problems do not have unique solutions. Typically, heuristic methods, mathematical models and GA models has been used to solve this problems. As heuristic methods and mathematical models are have weakness in solving the time-cost trade-off problems, GA based model has been studied widely in recent. This paper suggests the time-cost trade-off optimization algorithm using particle swarm optimization. The traditional particle swarm optimization model is modified to generate optimal tradeoffs among construction time and cost efficiently. An application example is analyzed to illustrate the use of the suggested algorithm and demonstrate its capabilities in generating optimal tradeoffs among construction time and cost. Future applications of the model are suggested in the conclusion.

Optimization of Luffing-Tower Crane Location in Tall Building Construction

  • Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.7-11
    • /
    • 2015
  • The luffing-tower crane (T/C) is a key facility used in the vertical and horizontal transportation of materials in a tall building construction. Locating the crane in an optimal position is an essential task in the initial stages of construction planning. This paper proposes a new optimization model to locate the luffing T/C in the optimal position to minimize the transportation time. A newly developed mathematical formula is suggested to calculate the transportation time of luffing T/C correctly. An optimization algorithm, the Harmony Search (HS) algorithm, was used and the results show that HS has high performance characteristics to solve the optimization problem in a short period of time. In a case study, the proposed model offered a better position for T/C than the previous heuristic approach.

Optimization of Luffing-Tower Crane Location in Tall Building Construction

  • Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.420-424
    • /
    • 2015
  • The luffing-tower crane (T/C) is a key facility used in the vertical and horizontal transportation of materials in a tall building construction. Locating the crane in an optimal position is an essential task in the initial stages of construction planning. This paper proposes a new optimization model to locate the luffing T/C in the optimal position to minimize the transportation time. An optimization algorithm, the Harmony Search (HS) algorithm, was used and the results show that HS has high performance characteristics to solve the optimization problem in a short period of time. In a case study, the proposed model offered a better position for T/C than the previous heuristic approach.

  • PDF

Preliminary study for Vertical Dynamic Site Layout Planning of High-Rise Building Construction (고층공사 가설시설물의 동적수직배치 최적화를 위한 기초연구)

  • Pyo, Kiyoun;Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.39-40
    • /
    • 2018
  • The goal of site layout planning(SLP) is to maximize the productivity and efficiency of the construction by reducing travel distance and material handling cost and manpower. However, SLPs are static layout schemes, which cannot be reorganized during the construction process to correspond with errors, phase transition, changing working environments on the site. To solve this problem, researches on dynamic site layout planning(DSLP) are emerging. This preliminary study clarifies characteristics of temporary facility's variables to develop the vertical DSLP algorithm of high-rise building construction.

  • PDF

Experimental Study on Optimization of Slab Form Design Using Harmonic Search Algorithm (하모닉 알고리즘을 활용한 슬래브 거푸집 디자인 최적화에 관한 실험적인 연구)

  • Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.185-186
    • /
    • 2018
  • The slabfrom, which is commonly used in construction sites, has drawbacks in that the workability of the workers is reduced due to their heavy weight. This study investigates the possibility of design optimization of euro form between structural stability and weight using harmonic search algorithm. The harmonic search algorithm is a metaheuristic optimization technique that obtains multiple optimal solution candidates through iterative. As a result of multiple attempts of optimization through the algorithm, it was possible to design the formwork which is structurally stable and light in weight than the existing formwork.

  • PDF