DOI QR코드

DOI QR Code

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri (Civil Engineering Department, Indian Institute of Technology) ;
  • Swarup K. Barman (Aerospace Engineering Department, Indian Institute of Technology)
  • Received : 2021.04.10
  • Accepted : 2024.01.25
  • Published : 2024.01.25

Abstract

Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.

Keywords

Acknowledgement

The author wish to acknowledge anonymous reviewers for their valuable suggestions and comments. The authors are grateful to department of Civil Engineering, IIT Kharagpur to provide the necessary infrastructure to carry out the research work.

References

  1. Aga, A.A.A. and Adam, F.M. (2015), "Design optimization of reinforced concrete frame", Open J. Civil Eng., 5(1), 74-83. https://doi.org/10.4236/ojce.2015.51008 
  2. Aldwaik, M. and Adeli, H. (2014), "Advances in optimization of highrise building structures", Struct. Multidisc. Optim., 50, 899-919. https://doi.org/10.1007/s00158-014-1148-1 
  3. Aldwaik, M. and Adeli, H. (2016), "Cost optimization of reinforced concrete flat slabsof arbitrary configuration in irregular highrise building structures", Struct. Multidisc. Optim., 54, 151-164. https://doi.org/10.1007/s00158-016-1483-5 
  4. Barman S.K., Maiti D.K., Maity D. (2020), Damage Detection of Truss Employing Swarm-Based Optimization Techniques: A Comparison In Advanced Engineering Optimization Through Intelligent Techniques: Advances in Intelligent Systems and Computing, Springer, Singapore. 
  5. Barman, S.K., Jebieshia, T.R., Tiwari, P, Maiti, D.K. and Maity, D. (2019) "Two-stage inverse method to detect delamination in composite beam using vibration responses", AIAA J., 57(3), 1312-1322. https://doi.org/10.2514/1.J057471 
  6. Bekas, G.K. and Stavroulakis, G.E. (2017), "Machine learning and optimality in multi storey reinforced concrete frame", Infrastructures, 2(2), 6. https://doi.org/10.3390/infrastructures2020006 
  7. Bekdas, G. and Nigdel, S.M. (2014), "Optimization of RC frame structures subjected to static loading", Proceedings of the 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014, 3869-3875. 
  8. Bekdas, G. and Nigdeli, S.M. (2016), "Optimum design of reinforced concrete columns employing teaching-learning based optimization", Challenge J. Struct. Mech., 2(4), 216-219. http://doi.org/10.20528/cjsmec.2016.11.030 
  9. Chakrabarty, B.K. (1992), "Models for optimal design of reinforced concrete beams", Comput. Struct., 42(3), 447-451. https://doi.org/10.1016/0045-7949(92)90040-7 
  10. Chaudhuri, P. and Maity, D. (2020), "Cost optimization of rectangular RC footing using GA and UPSO", Soft Comput., 24, 709-721. https://doi.org/10.1007/s00500-019-04437-x 
  11. Coello, C.C., Hernandez, F.S. and Farrera, F.A. (1997), "Optimal design of reinforced concrete beams using genetic algorithms", Expert Syst. Appl., 12(1), 101-108. https://doi.org/10.1016/S0957-4174(96)00084-X 
  12. De Medeiros, G.F. and Kripka, M. (2013), "Structural optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings", Comput. Concr., 11(3), 253-270. https://doi.org/10.12989/cac.2013.11.3.253 
  13. Dole, M.R., Ronghe, G.N. and Gupta, L.M. (2000), "Optimum design of reinforced concrete beams using polynomial optimization technique", Adv. Struct. Eng., 3(1), 67-79. https://doi.org/10.1260/1369433001502021 
  14. Eckhardt, R. (1987), "Stan Ulam, John Von Neumann, and the Monte Carlo method", Los Alamos Sci., 15, 131-136. 
  15. Esfandiari, M.J., Urgessa, G.S., Sheikholarefin, S. and Manshadi, S.H.D. (2018), "Optimum design of 3D reinforced concrete frame using DMPSO algorithm", Adv. Eng. Softw., 115, 149-160. https://doi.org/10.1016/j.advengsoft.2017.09.007 
  16. Esfandiary, M.J., Sheikholarefin, S. and Bondarabadi, H.A.R. (2016), "A combination of particle swarm optimization and multi-criterion decision-making for optimum design of reinforced concrete frame", Int. J. Optim. Civil Eng., 6(2), 245-268. 
  17. Ferreira, C.C., Barros, M.H.F.M. and Barros, A.F.M. (2003), "Optimal design of reinforced concrete T-sections in bending", Eng. Struct., 25(7), 951-964. https://doi.org/10.1016/S0141-0296(03)00039-7 
  18. Gharehbaghi, S. and Khatibinia, M. (2015), "Optimal seismic design of reinforced concrete structures under time- history earthquake loads using an intelligent hybrid algorithm", Earthq. Eng. Eng. Vib., 14(1), 97-109. https://doi.org/10.1007/s11803-015-0009-2 
  19. Hasencebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. 
  20. IS 1893 (Part I) (2016), Criteria for Earthquake Resistant Design of Structures - Part 1: General Provisions and Buildings, Bureau of Indian Standards, New Delhi, India 
  21. IS 456 (2000), Plain and Reinforced Concrete - Code of Practice, Bureau of Indian Standards, New Delhi, India. 
  22. IS 875 (Part I) (1987), Code of Practice for Design Loads (other than Earthquake) for Buildings and Structures: Part 1 Dead Loads - Unit Weights of Building Material and Stored Materials, Bureau of Indian Standards, New Delhi, India. 
  23. IS 875 (Part II) (1987), Code of Practice for Design Loads (other than Earthquake) for Buildings and Structures: Part 2 Imposed Loads, Bureau of Indian Standards, New Delhi, India. 
  24. IS 875 (Part III) (2015), Design loads (other than Earthquake) for Buildings and Structures - Code of Practice - Part 3 Wind Loads, Bureau of Indian Standards, New Delhi, India. 
  25. IS 875 (Part V) (2015), Code of Practice for Design Loads (other than Earthquake) for Buildings and Structures: Part 5 Special Loads and Load Combinations, Bureau of Indian Standards, New Delhi, India. 
  26. Kaveh, A. and Behnam, A.F. (2013), "Design optimization of reinforced concrete 3D structures considering frequency constraints via a charged system search", ScientiaIranica, 20(3), 387-396. https://doi.org/10.1016/j.scient.2012.11.017 
  27. Kennedy, J. and Eberhert, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948, IEEE, Australia. 
  28. Kulkarni, A. and Bhusare, V. (2017), "Structural optimization of reinforced concrete structures structural optimization of reinforced concrete structures", Int. J. Eng. Res. Technol., 5, 123-127. 
  29. Lee, J. (2019), "Multi-objective optimization case study with active and passive design in building engineering", Struct. Multidisc. Optim., 59, 507-519. https://doi.org/10.1007/s00158-018-2080-6 
  30. Lu, H., Gilbert, M. and Tyas, A. (2019), "Layout optimization of building frame subject to gravity and lateral load cases", Struct. Multidisc. Optim., 60, 1561-1570. https://doi.org/10.1007/s00158-019-02283-x 
  31. Metropolis, N. (1987), "The beginning of the Monte Carlo method", Los Alamos Sci., 15, 125-130. 
  32. Metropolis, N. and Ulam, S. (1949), "The Monte Carlo Method", J. Am. Statistic. Assoc., 44(247), 335-341. https://doi.org/10.2307/2280232 
  33. Milajic, A., Beljakovic, D. and Culic, N. (2014), "Optimal structural design based on applicability in practice", In Conference Proceedings of People, People, Buildings and Environment, Kromeriz, Czech Republic, 306-315. 
  34. Milajic, A., Pejicic, G. and Beljakovic, D. (2013), "Optimal structural design of reinforced concrete structures - review of existing solutions", Arch. Tech. Sci., 9(1), 53-60. 
  35. Milajic, A., Prokic, A., Beljakovic, D. and Pejicic, G. (2015), "Quantitative method for evaluating applicability of designed reinforcement pattern", Tech. Gazette, 22(1), 119-124. https://doi.org/10.17559/TV-20140210121432 
  36. Mishra, M., Barman, S.K, Maity, D and Maiti, D.K. (2020), "Performance studies of 10 metaheuristic techniques in determination of damages for large-scale spatial trusses from changes in vibration responses", J. Comput. Civil Eng., 34(2), 04019052. https://doi.org/10.1061/(ASCE)CP.1943-5487.000087 
  37. Mohan, S.C., Maiti, D.K and Maity, D. (2013) "Structural damage assessment using FRF employing particle swarm optimization", Appl. Math. Comput., 219(20), 10387-10400. https://doi.org/10.1016/j.amc.2013.04.016 
  38. Nanda, B., Maity, D., Maiti, D.K. (2014), "Damage assessment from curvature mode shape using unified particle swarm optimization", Struct. Eng. Mech., 52(2), 307-322. http://doi.org/10.12989/sem.2014.52.2.307 
  39. Nanda, B., Maity, D., Maiti, D.K. (2014), "Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization", Appl. Math. Comput., 242(1), 407-422. https://doi.org/10.1016/j.amc.2014.05.115 
  40. Nigdeli, S.M. and Bekdas, G. (2017), "Optimum design of RC continuous beams considering unfavourable live-load distributions", KSCE J. Civil Eng., 21(4), 1410-1416. https://doi.org/10.1007/s12205-016-2045-5 
  41. Parsopoulos, K.E. and Vrahatis, M.N. (2005), "Unified particle swarm optimization for solving constrained engineering optimization problems", Adv. Natural Comput., Berlin, Heidelberg, 582-591. https://doi.org/10.1007/11539902_71 
  42. Parsopoulos, K.E. and Vrahatis, M.N. (2010), Particle Swarm Optimization and Intelligence, 270, IGI Global. https://doi.org/10.4018/978-1-61520-666-7. 
  43. Parsopoulos, K.E., Kariotou, F., Dassios, G. and Vrahatis, M.N. (2009), "Tackling magneto-encephalography with particle swarm optimization", Int. J. Bio-Inspired Comput., 1(1-2), 32-49. https://doi.org/10.1504/IJBIC.2009.022772 
  44. Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19), 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013 
  45. Prakash, A., Agarwala, S.K. and Singh, K.K. (1988), "Optimum design of reinforced concrete sections", Comput. Struct., 30(4), 1009-1011. https://doi.org/10.1016/0045-7949(88)90142-3 
  46. Preethi, G. and Arulraj, P.G. (2016), "Optimal design of axially loaded RC columns", Bonfring Int. J. Ind. Eng. Manag. Sci., 6(3), 78-81. https://doi.org/10.9756/BIJIEMS.7345 
  47. Rajeev, S. and Krishnamoorthy, C.S. (1998), "Genetic algorithm-based methodology for design optimization of reinforced concrete frame", Comput. Aid. Civil Infrastruct. Eng., 13(1), 63-74. https://doi.org/10.1111/0885-9507.00086 
  48. RazmaraShooli, A., Vosoughi, A.R. and Banan, M.R. (2019), "A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frame", Appl. Soft Comput. J., 85(105843). 
  49. SP 64 (Part III) (2001), Explanatory Handbook on Indian Standard Code of Practice for Design Loads (other than Earthquake) for Buildings and Structures, Bureau of Indian Standards, New Delhi, India. 
  50. STAAD Pro V8i (2017), Select Series 6, Bentley Systems, Inc. PA, U.S.A. 
  51. Tapao, A. and Cheerarot, R. (2017), "Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frame", Eng. Struct., 151, 802-820. https://doi.org/10.1111/0885-9507.00086 
  52. The MathWorks Inc. (2022), MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com 
  53. Uz, M. E., Sharafi, P., Askarian, M., Fu, W. and Zhang, C. (2018), "Automated layout design of multi-span reinforced concrete beams using charged system search algorithm", Eng. Comput., 35(3), 1402-1413. https://doi.org/10.1108/EC-05-2017-0188 
  54. Wang, L., Zhang, H. and Zhu, M. (2020), "A new evolutionary structural optimization method and application for aided design to reinforced concrete components", Struct. Multidisc. Optim., 62, 2599-2613. https://doi.org/10.1007/s00158-020-02626-z. 
  55. WB PWD Schedule (2017), Schedule of Rates, Volume I: Building Works, Public Works Department (PWD), Government of West Bengal (WB), India. 
  56. Zegard, T., Hartz, C., Mazurek, A. (2020), "Advancing building engineering through structural and topology optimization", Struct. Multidisc. Optim., 62, 915-935. https://doi.org/10.1007/s00158-020-02506-6.