• Title/Summary/Keyword: building geometry

Search Result 242, Processing Time 0.022 seconds

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

Modeling Spatial Data in a geo-DBMS using 3D Primitives (Geo-DBMS의 3차원 Primitive를 이용한 공간정보데이터 구축 및 활용 - CityGML을 기반으로 -)

  • Park, In-Hye;Lee, Ji-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.50-54
    • /
    • 2009
  • Recently, many researches have been conducted to develop 3D Indoor/Outdoor Spatial Data Models. The 3D data created based on these data models have complex data structures. In order to manage these data efficiently, it is better to use a DBMS. There have been many researches to maintain the 3D data in Geo-DBMS, such that Oosterom (2002) and Arens (2005) developed a method to store 3D Building model, geometric and topological data of coverage in DBMSa. In this study, we propose a method to store the CityGML data into the RDBMS, Oracle Spatial 11g.

  • PDF

A Study of Smoke Movement in an Enclosed Corridor. (밀폐된 복도 공간내의 연기 거동에 관한 연구)

  • 김성찬;유홍선;정진용;김충익
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 1999
  • There are a lot of works for predicting smoke movement in a building experimentally and m numerically. It is Vel${\gamma}$ important to predict a smoke movement in a corridor which is c connected to adjacent spaces. A numerical analysis of smoke movement in an enclosed c corridor is perlormed by a field model. The used field model is develo야d with 3-D u unstructured meshes, PISO Algorithm and buoyant plume model. In this study, tern야~ature a and flow field, some important p하ameters such as smoke spread time, hot layer temperature, c ceiling jet velocity were compared with experimental data which were perlormed in Korea I Ins디tute of Machinery and Materials. And average velocity of ceiling jet by this study is c compared with Hinkley's formula. This paper shows a flow characteristic around the soffit a and average velocity of ceiling jet is i따luenced by geometry of corridor, heat output, and d distance from the fire source.

  • PDF

A Study on Architectural Expressive Characteristic of 'Structure & Skin Integration' Type in Contemporary Architecture - Focused on the Architecture cases after 2000 - (현대건축에서 구조와 표피 일체화 유형의 건축적 표현특성 - 2000년 이후 건축 사례를 중심으로 -)

  • Lee, Sang-Ho;Ban, Ja-Yuen
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.43-50
    • /
    • 2016
  • This study tries to categorize trends of "structure and skin integration" and understand the expressive characters of each architectural type. To do so, we listed up 8 architects who are quoted twice or more in related researches, then analyzed their 25 contemporary buildings which integrated structure and skin since 2000. As a result, this study defined four types based on the way of building tectonic system of structure and skin. Key feature of "linear structure-two dimensional skin" type is the communication with the surroundings as a result of .geometric architectural forms, patterned surface and reflection. Characters of "linear-three dimensional" type are organic architectural forms, sculptural skin, and the mysterious space. "Planar-two dimensional" type is a transformational geometry form to express the dramatic images through the skin, therefore gives a sense of rhythm and dynamics to space. "Planar structure-three dimensional" type highlights the texture, and exposes boundary of the inside and outside. In architectures we studied, the structure is the way to make a creative forms and space, and the skin to express various meanings. That said, the "structure and skin integration" is the means of aggressive design expression.

Model lessons of mathematical practice focus on creativity and character education curriculm (창의.인성교육을 위한 수학 수업 모형 사례)

  • Kwon, Oh-Nam;Park, Jee-Hyun;Park, Jeung-Sook
    • The Mathematical Education
    • /
    • v.50 no.4
    • /
    • pp.403-428
    • /
    • 2011
  • The direction of recent education literature points to the importance of creativity and creative practices, which also plays an important role in character education and has been recognized as being invaluable for the educational goals of the 21st century. As such, the goal of mathematics educators and researchers has also been on emphasizing the importance of building character and promoting creative practices. In this research, we study the pedagogical measures that can be easily implemented in classrooms to foster creative mathematical thinking and practices in students. In particular, the mathematical topic of interest is three-dimensional geometry, and especially polygons, and processes in which mathematical knowledge and creative practices play out in classrooms. For example, we explore how these creative lessons can be organized as the target internalization lessons, concepts definition lessons, regularity and relationship lessons, question posing lessons, and narrative story lessons. All of these lessons share three commonalities: 1) they require specific planning and execution challenges in order to achieve creative tasks, 2) they take advantage of open-ended problems, and 3) they are activity-oriented. Through this study, we hope to further our understanding on successful creative mathematical educational practices in the field of mathematics education, and help establish model lessons and materials for teachers and educators to use towards such goals.

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

A Prediction Method of Temperature Distribution on the Wafer for Real-Time Control in a Rapid Thermal Process System (실시간 제어를 위한 고속 열처리 공정에서 웨어퍼 온도 분포 추정 기법)

  • Sim, Yeong-Tae;Yi, Seok-Joo;Kim, Hagbae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.831-835
    • /
    • 2000
  • The uniformity of themperature on a wafer is a wafer is one the most important parameters to conterol the RTF(Rapid Thermal Process) with proper input signals. It is impossible to achieve the uniformity of temperature without the exact estimation of temperature ar all points on the wafer. There fore, it is difficult to understand the internal dynamics as well as the structural complexities of the RTP, which is aprimary obstacle to measure the distributed temperatures on the wafer accurately. Furthermore, it is also hard to accomplish desirable estimation because only a few pyrometers are available in the general equipments. In the paper, a thermal model based on the chamber grometry of the AST SHS200 RTP system is developed to effectively control the thermal uniformity on the wafer. First of all, the estimation method of one-point measurement is developed, which is properly extended to the case of multi-point measurements. This thermal model is validated through simulation and experiments. The proposed work can be utilized to building a run-by -run or a real-time control of the RTP.

  • PDF

Quick Fabrication of Three Dimensional Colloidal Crystals and Their Applications (3차원 콜로이드 광결정의 고속 제작 및 응용)

  • Lee, Su Jin;Im, Sang Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.640-643
    • /
    • 2013
  • On evaporation of water in polystyrene colloidal emulsion, the polystyrene colloidal particles are instantly protruded on the surface of water and are self-assembled by capillary force among the protruded particles. At the same time, the assembly of polystyrene colloidal particles is occurred on the surface of water owing to its lower effective density than water. Here we devised that the three-dimensional polystyrene colloidal crystals are quickly transferred onto the glass substrate by constructing wettable confined geometry on the glass substrate. We also applied the three-dimensional colloidal crystals to optical filters reflecting certain wavelength of light selectively by tuning the size of building blocks and incident angle of light.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).