• 제목/요약/키워드: building frame structures

검색결과 449건 처리시간 0.025초

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.

중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구 (Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type)

  • 유석형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.60-67
    • /
    • 2021
  • 국토교통부(2018)의 「필로티 건축물 구조설계 가이드라인」에서는 국내 필로티 형식의 다세대 주택과 같이 중저층의 상부벽식 하부 골조구조를 이루고 있는 복합구조의 고유주기를 안전성을 고려하여 상부 벽식구조에 해당하는 식을 적용하도록 제시하고 있다. 그러나 현행 벽식구조의 고유주기 산정 기준식은 주로 휨 거동하는 고층 벽식구조를 대상으로 한 실측 결과를 통하여 제정된 것으로서 벽체가 전단거동을 하는 국내 4층이하 필로티형 다세대 주택에는 적합하지 않을 것으로 사료되며, 또한, Park et al. (2000)은 해석적 연구를 통하여 10층 이상의 복합구조물의 고유주기에서 하부 골조구조의 영향이 상부 벽식구조보다 크게 작용하고 있음을 확인하였다. 따라서 본 연구에서는 중저층 필로티 구조의 고유주기에 미치는 하부골조의 영향을 검토하기 위하여 상부 벽식구조의 전단 및 휨 강성과 하부골조구조의 전단강성을 변수로 하는 대상 구조물들에 대하여 유한요소 모델을 이용한 고유치 해석과 고유주기 산정 근사식 그리고 현행 고유주기 산정 기준식을 이용하여 고유주기를 산출하고 비교하였다. 비교결과 하부골조의 전단강성변화가 상부벽체의 휨 또는 전단강성의 변화보다 건물 전체의 고유주기에 더 큰 영향을 주는 것으로 나타났다.

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험 (Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System)

  • 신지욱
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

Assessment of ASCE 7-10 for wind effects on low-rise wood frame buildings with database-assisted design methodology

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.163-173
    • /
    • 2018
  • The design wind pressure for low-rise buildings in the ASCE 7-10 is defined by procedures that are categorized into the Main Wind Force-Resisting System (MWFRS) and the Components and Cladding (C&C). Some of these procedures were originally developed based on steel portal frames of industrial buildings, while the residential structures are a completely different structural system, most of which are designed as low-rise light-frame wood constructions. The purpose of this study is to discuss the rationality (or irrationality) of the extension of the wind loads calculated by the ASCE 7-10 to the light-frame wood residential buildings that represent the most vulnerable structures under extreme wind conditions. To serve this purpose, the same approach as used in the development of Chapter 28 of the ASCE 7-10 that envelops peak responses is adopted in the present study. Database-assisted design (DAD) methodology is used by applying the dynamic wind loads from Louisiana State University (LSU) database on a typical residential building model to assess the applicability of the standard by comparing the induced responses. Rather than the postulated critical member demands on the industrial building such as the bending moments at the knee, the maximum values at the critical points for wood frame buildings under wind loads are used as indicators for the comparison. Then, the critical members are identified through these indicators in terms of the displacement or the uplift force at connections and roof envelope. As a result, some situations for each of the ASCE 7 procedures yielding unconservative wind loads on the typical low-rise residential building are identified.

Optimal design of wind-induced vibration control of tall buildings and high-rise structures

  • Li, Qiusheng;Cao, Hong;Li, Guiqing;Li, Shujing;Liu, Dikai
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.69-83
    • /
    • 1999
  • The most common used control device on tall buildings and high-rise structures is active and passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed. The existing installations of various passive/active control devices on real structures are listed. A set of parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure and to verify the efficiency of ATMD and TMD with the optimal parameters.

철골형 CFT 프레임을 활용한 내진보강 복합공법 개발 (Development of Seismic Strengthening Composite Method using Steel type CFT Frame)

  • 이동운;우종열;박현정
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2018
  • There is a risk that the damage caused by frequent earthquakes can lead to the risk of personal injury due to cracks in buildings and collapse of major structures. Although the seismic design of the new building is designed to be reinforced, the existing structure is not exposed to the risk of earthquake. Therefore, it is aimed to develop the steel frame type CFT composite method which can easily reinforce the CFT structural system with excellent seismic performance against the old non - seismic structure.

  • PDF

지하철골공사 공사비산정기준 마련을 위한 현장조사 연구 (A Study on the Establishment of Construction Cost Estimation Standard of Underground Steel Construction through Field Survey)

  • 송태석;한상준;안방율
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.339-340
    • /
    • 2023
  • Steel construction is one of the commonly used methods in building construction due to its efficiency in terms of time and cost. In particular, the top-down method using steel frames is widely used in the construction of underground structures in urban areas to shorten the construction period. However, there is currently no standardized cost estimation for subway steel frame construction in Korea, causing difficulties in determining the expected cost. In this study, we aim to provide basic data for establishing a cost estimation standard for subway steel frame construction through on-site surveys of subway steel frame construction commonly used in urban areas.

  • PDF

"Buildings Without Walls:" A Tectonic Case for Two "First" Skyscrapers

  • Leslie, Thomas
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.53-60
    • /
    • 2020
  • "A practical architect might not unnaturally conceive the idea of erecting a vast edifice whose frame should be entirely of iron, and clothing the frame--preserving it--by means of a casing of stone…that shell must be regarded only as an envelope, having no function other than supporting itself..." --Viollet-le-Duc, 1868. Viollet-le-Duc's recipe for an encased iron frame foresaw the separation of structural and enclosing functions into discrete systems. This separation is an essential characteristic of skyscrapers today, but at the time of his writing cast iron's brittle nature meant that iron frames could not, on their own, resist lateral forces in tall structures. Instead, tall buildings had to be braced with masonry shear walls, which often also served as environmental enclosure. The commercial availability of steel after the 1880s allowed for self-braced metal frames while parallel advances in glass and terra cotta allowed exterior walls to achieve vanishingly thin proportions. Two Chicago buildings by D.H. Burnham & Co. were the first to match a frame "entirely of iron" with an "envelope" supporting only itself. The Reliance Building (1895) was the first of these, but the Fisher Building (1896) more fully exploited this new constructive typology, eschewing brick entirely, to become the first "building without walls," a break with millennia of tall construction reliant upon masonry

효율적인 빌딩 관제를 위한 표준설비 인터페이스 설계 (Design of Standard Facility Interface for Efficient Building Control)

  • Moon, Sang-Ho
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.334-337
    • /
    • 2021
  • Recently, the necessity of rapid response to social problems such as disasters and quarantine arising from the complex and diverse social structures has emerged. As the number of large buildings increases, large-scale human damage is expected in the event of a disaster such as fire. To solve this problem, efficient control must be achieved through interfacing with various equipment and facilities installed inside the building. In this paper, we intend to study the interface method for various facilities in the building for efficient control. In detail, the facility standard model is defined by examining the status and specification of building. In addition, we intend to design and propose a standard facility communication data frame to support the protocol applicable to this model.