• 제목/요약/키워드: building energy performance simulation

검색결과 331건 처리시간 0.025초

주거 건물의 복사냉방시스템 적용에 관한 연구 (A Study on the Application of the Radiant Floor Cooling System in Residential Building)

  • 임재한;여명석;김광우
    • 한국주거학회논문집
    • /
    • 제15권3호
    • /
    • pp.73-82
    • /
    • 2004
  • The objective of this study is to demonstrate the potential of radiant cooling systems using Ondol as an alternative cooling system in residential buildings. For this purpose, computer simulation and model experiments have been performed for the system performance analysis regarding comfort, floor surface condensation, and supply water temperature. The results of this study is the following: In radiant floor cooling system, room air temperatures were maintained within the set temperature range of $\pm$1$^{\circ}C$ without any discomfort condition. And taking into account only the condensation occurrence, it was possible to achieve radiant floor cooling for a period of about 77% of the total cooling period in weather condition of Seoul. The minimum supply water temperature is about 15$^{\circ}C$, so renewable energy system such as ground heat exchange system can be used as an alternative in cooling source. Also, floor surface condensation can be prevented by integrating with the dehumidification system.

에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구 (Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH))

  • 윤종호;백남춘;유창균;김종일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

공공건축물의 그린리모델링 수준별 LCC (Life Cycle Cost) 분석을 통한 경제성 비교 (The Economic Comparision through LCC Analysis on each Graded Alternatives for Green Remodeling of Public Building)

  • 김재문;이정혁;이두환
    • 한국건설관리학회논문집
    • /
    • 제19권2호
    • /
    • pp.38-49
    • /
    • 2018
  • 파리협약 비준 이후 온실감축에 대한 중요성 및 국가 의무가 커짐에 따라 정부에서는 건축산업의 온실가스 감축을 위한 정책을 지속적으로 강화해 나가고 있으며, 특히 노후건축물에 대한 에너지 성능개선의 필요성을 강조하고 있다. 2014년 이후 정부에서는 공공 노후건축물 그린리모델링 사업의 시공비 지원 등으로 시범사업을 운영 중에 있으며 이를 통해 그린리모델링의 모범사례를 개발하여 민간에 그린리모델링을 활성 시키고자 한다. 본 연구에서는 공공 노후건축물의 그린리모델링을 통한 수준별 경제성을 분석하였으며, 해당건물의 대안을 계획하기 위해 건물 육안조사 및 장비측정을 수행하였다. 개선안은 대안을 종합한 그린리모델링 계획안으로 수준별 5개의 개선안을 개발하여 각 안에 대한 경제성을 분석하였다. 분석방법은 ECO2를 통한 1차 에너지소요량 산정 및 LCC 분석을 진행하였으며, LCC 측면에서는 개선 3, 4안(중간수준 안)이 가장 우수한 것으로 분석되었으며, 다음으로 최대비용안, 최소 비용 안 순으로 결과가 도출되었다. 이 결과로 향후 진행될 그린리모델링 성능계획 및 경제성 분석 시 기초자료로서 활용이 가능 할 것으로 예상된다.

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man;Kim, Hwa Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.97-103
    • /
    • 2020
  • 무선 센서 네트워크는 인간의 개입 없이 다양한 환경에서 센싱 데이터를 수집하고 분석한다. 센서 네트워크는 초기에 설치된 라우팅 프로토콜들에 따라 네트워크 수명이 변경된다. 게다가, 네트워크가 운영 중에 라우팅 경로를 변경하기 위해 센서들은 많은 에너지를 소모해야 한다. 센서 네트워크를 실제 필드에 구축하기 전에 시뮬레이션을 통해 성능 측정하는 것은 중요하다. 본 논문은 DEVS 커널 모델들을 사용하여 저전력 적응형 클러스터링 계층 프로토콜을 위한 WSN 모델을 제안한다. 제안 모델은 커널 모델인 브로드캐스트 모델과 컨트롤드 모델로 구현된다. 실험 결과, 컨트롤드 기반의 WSN 모델은 데이터 전송 부분에서는 효율적이지만, 컨트롤드 모델에서 특정 모델을 선택하기 위해 CPU 사용량이 높은 것을 확인했다.

가변 풍량 유닛에 대한 적분기를 가진 상태 궤환 제어에 관한 연구 (A Study on the State feedback with Integral Control for a Variable Air Volume Unit)

  • 박세화
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.9-14
    • /
    • 2000
  • 건물의 에너지 효율과 절약을 위해 최근 주목을 많이 받고 있는 가변 풍량 유닛(VAV)에 대해 실제적인 적용을 위한 적분기를 가진 상태 궤환 제어기를 연구한다. 디지털 제어기에 적합하도록 제어기를 개발하게 되며, 디지털 제어기는 결과적으로 대상으로 하는 실내 공간의 온도와 급기 유량으로부터 VAV 유닛 댐퍼의 개도를 조절한다. 설정 온도의 변화와 외부 온도의 변화등의 조건에 대해 모의 실험이 수행되었으며, 단순화된 대상 실내 공간과 댐퍼 구동기의 모델링이 고려되어 제어기의 이득 파라미터와 시스템의 동특성과의 관계를 고찰한다.

  • PDF

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

IT용 초소형부품의 불량검출과 산업현장의 재해방지 효과 (The Effect of Disaster Prevention of Industrial Field and Failure Detection of Very Small Components for IT)

  • 박대영;정양근;최선미;변재영;최원식
    • 한국산업융합학회 논문집
    • /
    • 제18권1호
    • /
    • pp.18-29
    • /
    • 2015
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The system was introduced into a real building and was examined by the field measurement. Judging from the measurements during three years(1999~2001), the state of the system operation was very stable through this period and it was clear that the system contributes to reduction of energy consumption for air-conditioning. Futhermore, a simulation model used the simple heat diffusion equation was developed to simulate its thermal characteristics and performances. The simulations resulted in air temperature in good agreement with the measurements. Also, from the result of numerical analysis, it is clear that the amount of heat supply by using this system is more than the amount of energy loss to the room above it. Therefore, it is concluded that this systems is very useful and the proposed numerical model can be used for the prediction of system thermal performance.

하수열을 이용한 냉난방시스템에 관한 연구 (Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle)

  • 이용화;신현준;윤희철;박현건
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측 (Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD)

  • 손정은;유병호;방승기;이광호
    • 설비공학논문집
    • /
    • 제29권3호
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.

S-FEAR: Secure-Fuzzy Energy Aware Routing Protocol for Wireless Sensor Networks

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1436-1457
    • /
    • 2018
  • Secure routing services in Wireless Sensor Networks (WSNs) are essential, especially in mission critical fields such as the military and in medical applications. Additionally, they play a vital role in the current and future Internet of Things (IoT) services. Lightness and efficiency of a routing protocol are not the only requirements that guarantee success; security assurance also needs to be enforced. This paper proposes a Secure-Fuzzy Energy Aware Routing Protocol (S-FEAR) for WSNs. S-FEAR applies a security model to an existing energy efficient FEAR protocol. As part of this research, the S-FEAR protocol has been analyzed in terms of the communication and processing costs associated with building and applying this model, regardless of the security techniques used. Moreover, the Qualnet network simulator was used to implement both FEAR and S-FEAR after carefully selecting the following security techniques to achieve both authentication and data integrity: the Cipher Block Chaining-Message Authentication Code (CBC-MAC) and the Elliptic Curve Digital Signature Algorithm (ECDSA). The performance of both protocols was assessed in terms of complexity and energy consumption. The results reveal that achieving authentication and data integrity successfully excluded all attackers from the network topology regardless of the percentage of attackers. Consequently, the constructed topology is secure and thus, safe data transmission over the network is ensured. Simulation results show that using CBC-MAC for example, costs 0.00064% of network energy while ECDSA costs about 0.0091%. On the other hand, attacks cost the network about 4.7 times the cost of applying these techniques.