• Title/Summary/Keyword: building, forest

Search Result 372, Processing Time 0.024 seconds

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.

Impacts of the Building Permit Area Change on the Forest Products Import Quantities in Korea (건축허가면적(建築許可面積)의 변화(變化)가 임산물(林産物) 수입(輸入)에 미치는 영향(影響))

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.217-226
    • /
    • 2001
  • This study estimated the impacts of the building permit area change on the forest products import quantities in Korea. The first objective of this dissertation is to analyze whether there is any causal relationship between change in the building permit area and changes in the import quantities of forest products in Korea. Assuming that there is any causal relationship, the second objective is to evaluate the dynamics of the impacts of the building permit area change on the forest products import quantities in Korea. The relationship between the building permit area and the import quantity was represented by bivariate vector autoregressive or vector error correction model. Whether there is any causal relationship between change in the building permit area and changes in the import quantities of forest products was analyzed by the causality test of Granger. And the dynamics of the impacts of the building permit area change on the forest products import quantities were evaluated by variance decomposition analysis and impulse response analysis. The import quantity of forest products can be explained by the lagged building permit area variables and the lagged import quantity variables in Korea. Change in the building permit area causes change in the high-density fiberboard import quantity in Korea. In the bivariate model of the high-density fiberboard import quantity, after six months, the building permit area change accounts for about ten percent of variation in the import quantity, and its own change accounts for about ninety percent of variation in the import quantity. On the other hand, the impact of a shock to the building permit area is significant for about six months on the import quantity of high-density fiberboard in Korea. That is, if the building permit area change indeed had an impact on the import quantity of high-density fiberboard in Korea, it was only of a short-term nature.

  • PDF

EXTRACTING COMPLEX BUILDING FROM AIRBORNE LIDAR AND AIRBORNE ORTHIMAGERY

  • Nguyen, Dinh-Tai;Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • Many researches have been tried to extract building models and created a 3D cyber city from LiDAR data. In this paper, the approach of extracting complex building by using airborne LiDAR data combined with airborne orthoimagery has been performed. The pseudo-building elevations were derived from modified discrete return LiDAR data. Based on information property of the pseudo-height, building features could be extracted. The results of this study indicated the improvement of building extraction.

  • PDF

BUILDING EXTRACTION FROM LIDAR DATA USING DEVIRED NORMALIZE DIGITAL SURFACE MODEL

  • Nguyen, Dinh-Tai;Lee, Seung-Ho;Cho, Hyun-Kook;Kim, Cheon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.286-290
    • /
    • 2009
  • In recent years, LiDAR technology has been becoming more popular and important. Its applications are completely replacing the traditional remote sensing technique. One of these applications is creating Digital City Models in urban areas, which is essential for many others such as disaster management, cartographic mapping, simulation of new buildings, updating and keeping cadastral data. In most of these cases the building outlines is the primary feature of interest. In this paper, a method of extracting building outlines from LiDAR data will be performed.

  • PDF

Air Tightness Performance of Residential Timber Frame Buildings

  • Kim, Hyun-Bae;Park, Joo-Saeng;Hong, Jung-Pyo;Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.89-100
    • /
    • 2014
  • Energy consumption statistics in 2005 from the Korea Energy Management Corporation show that building energy usage was about 24.2% of total domestic energy consumption, and 64% of total building energy usage was consumed by residential buildings. Thus, about 10% of total domestic energy consumption is due to the heating of residential buildings. Building energy can be calculated by the configuration of the building envelope and the rate of infiltration (the volume of the infiltration of outdoor air and the leakage of indoor air), and by doing so, the annual energy usage for heating and cooling. Therefore, air-tightness is an important factor in building energy conservation. This investigate air infiltration and various factors that decrease it in timber frame buildings and suggest ways to improve air-tightness for several structural types. Timber frame buildings can be classified into light frame, post and beam, and log house. Post and beam includes Han-ok (a Korean traditional building). Six light frame buildings, three post and beam buildings, one Korean traditional Han-ok and a log house were selected as specimens. Blower door tests were performed following ASTM E779-03. The light frame buildings showed the highest air-tightness, followed by post and beam structures, and last, log houses.

Identification of Sapstain Fungi on Weathered Wooden Surfaces of Buildings at Jangheung and Jeju Island

  • YUN, Jeonghee;SHIN, Hee Chang;HWANG, Won Joung;YOON, Sae-Min;KIM, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.591-601
    • /
    • 2021
  • Recently it is trend to increase wood use as carbon neutral materials, there is recognized to need necessarily durability improvement of wooden building. It is very rare to report existing on the identification of isolates causing discoloration in domestic weathered wooden building used for long period. The objective of this study was identification of fungi that cause discoloration on the exteriors of weathered domestic wooden buildings in the southern part of South Korea. Our findings can be helpful to establish protection technology for weather deterioration of domestic wooden buildings. Wood chip samples presumed to be contaminated with sapstain fungi were collected from the surface of wooden members used in wooden buildings at Jangheung, Jeollanam-do (two locations, #13 and #14), and Jeju Island (two locations, #31 and #33). The growth of microorganisms was confirmed by performing culture tests for the collected samples, and fungi were isolated, purified, and identified. The results indicated that the fungal strains isolated from wooden buildings #13 and #14 at Jangheung, Jeollanam-do, were 99.83% and 100% homologous to Aureobasidium melanogenum, respectively. For wooden building #31 at Jeju Island (two locations), the fungal strain isolated was 100% homologous to A. melanogenum, which is the same species isolated from the wooden buildings at Jangheung. The fungal strain isolated from wooden building #33 (Jeju Island) had 99.83% homology with A. pullulans, which is commonly found in wood degraded by weather or ultraviolet rays. Our findings can be utilized as a basis for establishing protection technology in domestic wooden buildings.

Field Application of an Ultrasonic Testing for Reconstructing CT Images of Wooden Columns

  • Lee, Sang-Joon;Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • This research examined the applicability of using an ultrasonic test to reconstruct CT images of an ancient wooden building. Most of the columns in the building are severely deteriorated due to termite attacks or the effect of weathering. Ultrasonic CT images of the columns were used to create highly accurate digital reconstructions, despite a lack of the data caused by parts of the building walls being buried. Another semi-NDE technique, a drilling test based on resistography, was applied in order to verify the ultrasonic test results. The discrepancy in detection between two methods is believed to be due to the fundamental differences between two methods. The performance of the ultrasonic test was hindered by poor surface conditions and this technique tended to over-estimate the size of cavities produced by termites or other insects. Nevertheless, the deterioration detected was in many ways congruent with the drilling test results

Simulation Program for Estimating the Environmentally Acceptable Building Height using the GIS Simulation Technique (시뮬레이션 기법을 활용한 친환경적 건축물 높이 예측 프로그램 개발)

  • Park, Young-Kyu;Jeon, Jun-Heon;Roh, Hye-Jung;Kwon, Soon-Duk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, we intended to develope a simulation program for assessing a building height whether or not acceptable for maintaining the visual quality of a forest landscape. A number of geographical factors were considered within the assessment procedure. As the visual quality of a landscape could vary according to the location of view points, we examined 3 methodologies for setting up the view points. The result for comparison between method of selecting viewpoints was not significantly effecting method of selecting viewpoints. Post hoc test showed a moderately large p-value and no significant differences between groups were observed. The result from a case study indicated that the simulation program is able to estimate an environmentally acceptable building height in an efficient manner. In this study, however, only the geographical factors were considered for the assessment, but forest dynamic information such as stand height was not considered. Thus, in the further study, forest stand height would be necessarily considered to estimate a more reliable and desirable building height.

  • PDF

Thermal Environment Evaluation of Wooden House Using Infra-red Thermal Image and Temperature Difference Ratio (TDR) (적외선열화상과 온도차비율법을 이용한 목조 주택의 열환경평가)

  • Chang, Yoon-Seong;Eom, Chang-Deuk;Park, Jun-Ho;Lee, Jun-Jae;Park, Joo-Saeng;Park, Moon-Jae;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.518-525
    • /
    • 2010
  • Infrared (IR) thermography which is the technique for detecting invisible infrared light emitted by objects due to their surface thermal condition and for producing an image of the light has been applied in various field without damaging the objects. It also could be used indirectly to examine the inside of an object. In this study, insulation property of wooden house in Korea Forest Research Institute (KFRI) was evaluated with according to "Thermal performance of building - Quantitative detection of thermal irregularities in building envelopes - infrared method (KS F 2829)". This method uses "Temperature Difference Ratio (TDR)" between outdoor wall surface and indoor wall surface of wooden building for evaluating its thermal performance. The thermal performance of a room on the 2nd floor of the wooden house was focused in this study and IR thermography on the indoor and outdoor surface of the house was captured by IR camera. Heat loss from the corner and the window of the wooden house as well as wall of the house was quantitatively evaluated and the invisible heat loss in the wall was detected. It is expected that the results from this study could contribute to improve the wooden building energy efficiency.

Shear Performance of Hybrid Post and Beam Wall System Infilled with Structural Insulation Panel (SIP)

  • Shim, Kug-Bo;Hwang, Kweon-Hwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-413
    • /
    • 2010
  • A hybrid post and beam shear wall system with structural insulation panel (SIP) infill was developed as a part of a green home 'Han-green' project through post and beam construction for contemporary life style. This project is on-going at the Korea Forest Research Institute to develop a new building system which improves Korean traditional wet-type building system and stimulates industrialized wood construction practice with pre-cut system. Compared to the traditional wet-type infill wall components, the hybrid wall system has benefits, such as, higher structural capacity, better thermal insulation performance, and shorter construction term due to the dry-type construction. To build up the hybrid wall system, in previous, SIP infill wall components can be manufactured at factory, and then inserted and nailed with helically threaded nails into the post and beam members at site. Shear performance of the hybrid wall system was evaluated through horizontal shear tests. The SIP hybrid wall system showed higher maximum shear strength, initial stiffness, ductility, yield strength, specified strength, and the specified allowable strength than those of post and beam with light-frame wall system. In addition to this, the hybrid wall system can provide speedy construction and structural and functional advantages including energy efficiency in the building system.