• Title/Summary/Keyword: buffer replacement

Search Result 57, Processing Time 0.028 seconds

IT-based Technology An Efficient Global Buffer Management ,algorithm for SAN Environments (SAN 환경을 위한 효율적인 전역버퍼 관리 알고리즘)

  • 이석재;박새미;송석일;유재수;이장선
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.71-80
    • /
    • 2004
  • In distributed file-systems, cooperative caching algorithm which owns the data cached at each node jointly is used to reduce an expense of disk access. Cooperative caching algorithm is the method that increases a cache hit-ratio and decrease a disk access as it holds the cache information of distributed systems in common and makes cache larger virtually. Recently, several cooperative caching algorithms decrease the message costs by using approximate information of the cache and increase the cache hit-ratio by using local and global cache fields dynamically. And they have an advantage that increases the whole field hit-ratio by sending a replaced buffer to the idle node on buffers replacement in order to maintain the replaced cache in the cache field. However the wrong approximate information deteriorates the performance, the consistency maintenance goes to great expense to exchange messages and the cost that manages Age-information of each node to choose the idle node increases. In this thesis, we propose a cooperative cache algorithm that maintains correct cache information, minimizes the maintenance cost for consistency and the management cost for buffer Age-information. Also, we show the superiority of our algorithm through the performance evaluation.

  • PDF

An Efficient Buffer Cache Management Scheme for Heterogeneous Storage Environments (이기종 저장 장치 환경을 위한 버퍼 캐시 관리 기법)

  • Lee, Se-Hwan;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2010
  • Flash memory has many good features such as small size, shock-resistance, and low power consumption, but the cost of flash memory is still high to substitute for hard disk entirely. Recently, some mobile devices, such as laptops, attempt to use both flash memory and hard disk together for taking advantages of merits of them. However, existing OSs (Operating Systems) are not optimized to use the heterogeneous storage media. This paper presents a new buffer cache management scheme. First, we allocate buffer cache space according to access patterns of block references and the characteristics of storage media. Second, we prefetch data blocks selectively according to the location of them and access patterns of them. Third, we moves destaged data from buffer cache to hard disk or flash memory considering the access patterns of block references. Trace-driven simulation shows that the proposed schemes enhance the buffer cache hit ratio by up to 29.9% and reduce the total I/O elapsed time by up to 49.5%.

Characteristics and Automatic Detection of Block Reference Patterns (블록 참조 패턴의 특성 분석과 자동 발견)

  • Choe, Jong-Mu;Lee, Dong-Hui;No, Sam-Hyeok;Min, Sang-Ryeol;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1083-1095
    • /
    • 1999
  • 최근 처리기와 입출력 시스템의 속도 차이가 점점 커짐에 따라 버퍼 캐쉬의 효율적인 관리가 더욱 중요해지고 있다. 버퍼 캐쉬는 블록 교체 정책과 선반입 정책에 의해 관리되며, 각 정책은 버퍼 캐쉬에서 블록의 가치 즉 어떤 블록이 더 가까운 미래에 참조될 것인가를 결정해야 한다. 블록의 가치는 응용들의 블록 참조 패턴의 특성에 기반하며, 블록 참조 패턴의 특성에 대한 정확한 분석은 올바른 결정을 가능하게 하여 버퍼 캐쉬의 효율을 높일 수 있다. 본 논문은 각 응용들의 블록 참조 패턴에 대한 특성을 분석하고 이를 자동으로 발견하는 기법을 제안한다. 제안된 기법은 블록의 속성과 미래 참조 거리간의 관계를 이용해 블록 참조 패턴을 발견한다. 이 기법은 2 단계 파이프라인 방법을 이용하여 온라인으로 참조 패턴을 발견할 수 있으며, 참조 패턴의 변화가 발생하면 이를 인식할 수 있다. 본 논문에서는 8개의 실제 응용 트레이스를 이용해 블록 참조 패턴의 발견을 실험하였으며, 제안된 기법이 각 응용의 블록 참조 패턴을 정확히 발견함을 확인하였다. 그리고 발견된 참조 패턴 정보를 블록 교체 정책에 적용해 보았으며, 실험 결과 기존의 대표적인 블록 교체 정책인 LRU에 비해 최대 57%까지 디스크 입출력 횟수를 줄일 수 있었다.Abstract As the speed gap between processors and disks continues to increase, the role of the buffer cache located in main memory is becoming increasingly important. The buffer cache is managed by block replacement policies and prefetching policies and each policy should decide the value of block, that is which block will be accessed in the near future. The value of block is based on the characteristics of block reference patterns of applications, hence accurate characterization of block reference patterns may improve the performance of the buffer cache. In this paper, we study the characteristics of block reference behavior of applications and propose a scheme that automatically detects the block reference patterns. The detection is made by associating block attributes of a block with the forward distance of the block. With the periodic detection using a two-stage pipeline technique, the scheme can make on-line detection of block reference patterns and monitor the changes of block reference patterns. We measured the detection capability of the proposed scheme using 8 real workload traces and found that the scheme accurately detects the block reference patterns of applications. Also, we apply the detected block reference patterns into the block replacement policy and show that replacement policies appropriate for the detected block reference patterns decreases the number of DISK I/Os by up to 57%, compared with the traditional LRU policy.

Spectrophotometric Determination of Trace Lead(II) After Extraction of Lead-Thiosulfate Complex into Aliquat336-CHCl$_3$ and Replacement by Cu (납-티오황산 착물생성과 구리치환에 의한 미량 납(II)의 비색분석에 관한 연구)

  • Lee, Seok-Ki;Joung, Chang-Ung
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 1998
  • A spectrophotometric method was developed for the acidic solution stripped after an extraction of 0.5 to 2.5 ppm of Lead(II) from 50 mL of $Na_2S_2O_3$ solution into chloroform as the ion-pairs formed between their thiosulfate complexes and alkylamine, Aliquat336. Pb(II) in the stripped solution forms an complex with DDTC in pH 7.3 buffer solution, and was developed in yellow by copper replacement. The ydlow-colored solution have the maximum absorbance at 435 nm in the measurement of absorbance by UV-Visible spectrophotometer. The interference ions such as Fe(III), Hg (II), Al(III), Co, Cu, Ni, Zn, Ca, Sn, have great effects on the extraction, but they were overcomed by the usage of adequate masking agents before an extraction. At last, a good result was obtained in applying this method to synthetic water.

  • PDF

CPWL : Clock and Page Weight based Disk Buffer Management Policy for Flash Memory Systems

  • Kang, Byung Kook;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • The use of NAND flash memory is continuously increased with the demand of mobile data in the IT industry environment. However, the erase operations in flash memory require longer latency and higher power consumption, resulting in the limited lifetime for each cell. Therefore, frequent write/erase operations reduce the performance and the lifetime of the flash memory. In order to solve this problem, management techniques for improving the performance of flash based storage by reducing write and erase operations of flash memory with using disk buffers have been studied. In this paper, we propose a CPWL to minimized the number of write operations. It is a disk buffer management that separates read and write pages according to the characteristics of the buffer memory access patterns. This technique increases the lifespan of the flash memory and decreases an energy consumption by reducing the number of writes by arranging pages according to the characteristics of buffer memory access mode of requested pages.

A Study on Data Buffer Replacement Policy in Solid State Drives (SSD 기반의 데이터 버퍼 교체 정책 분석)

  • Kang, Dong Hyun;Eom, Young Ik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.56-57
    • /
    • 2014
  • 최근 HDD와는 다른 성능 특성을 가진 SSD가 빠르게 보급됨으로써, SSD의 성능 특성을 고려한 연구들이 활발하게 진행되고 있다. 특히, SSD의 내부에 위치한 작은 사이즈의 램 버퍼를 활용함으로써 SSD의 랜덤 쓰기의 성능을 향상시키기 위한 기법들이 연구되고 있다. 본 논문에서는 SSD의 구조를 확인하고 기존 데이터 버퍼 교체 기법에 대한 분석 및 비교를 수행한다.

A Study on Flash Memory Management Techniques (플래시메모리의 관리 기법 연구)

  • Kim, Jeong-Joon;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.143-148
    • /
    • 2017
  • Flash Memory which is light and strong external shock as storage of small electronics like smartphone, digital camera, car black box has been widely used. Since the operation speed of the read operation and the write operation are different from each other, and the flash memory has the feature that it is not possible to overwrite, the delete operation is added to solve these problems. Wear-leveling must also be considered, since the number of erase times of the flash memory is limited. Many studies have been conducted on the substitutional algorithms of flash memory based on these characteristics of recent flash memories. So, to solve the problem that has existing buffer replacement algorithm this thesis divide page into 6 groups and when proposed algorithm select victim page, it consider reference page frequency and page recency.

An Efficient Buffer Replacement Policy based on CLOCK Algorithm for NAND Flash Memory (낸드 플래시 메모리를 위한 CLOCK 알고리즘 기반의 효율적인 버퍼 교체 전략)

  • Kim, Jong-Sun;Son, Jin-Hyun;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.825-834
    • /
    • 2009
  • 최근에 낸드 플래시 메모리는 빠른 접근속도, 저 전력 소모, 높은 내구성 등의 특성으로 인하여 차세대 대용량 저장 매체로 각광 받고 있다. 그러나 디스크 기반의 저장 장치와는 달리 비대칭적인 읽기, 쓰기, 소거 연산의 처리 속도를 가지고 있고 제자리 갱신이 불가능한 특성을 가지고 있다. 따라서 디스크 기반 시스템의 버퍼 교체 정책은 플래시 메모리 기반의 시스템에서 좋은 성능을 보이지 않을 수 있다. 이러한 문제를 해결하기 위해 플래시 메모리의 특성을 고려한 새로운 플래시 메모리 기반의 버퍼 교체 정책이 제안되어 왔다. 본 논문에서는 디스크 기반의 저장 장치에서 우수한 성능을 보인 CLOCK-Pro를 낸드 플래시 메모리의 특성을 고려하여 개선한 CLOCK-NAND를 제안한다. CLOCK-NAND는 CLOCK-Pro의 알고리즘에 기반하며, 추가적으로 페이지 접근 정보를 효율적으로 활용하기 위한 새로운 핫 페이지 변경을 한다. 또한, 더티인 핫 페이지에 대해 콜드 변경 지연 정책을 사용하여 쓰기 연산을 지연하며, 이러한 새로운 정책들로 인하여 낸드 플래시 메모리에서 쓰기 연산 횟수를 효율적으로 줄이는 우수한 성능을 보인다.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Designing a low-power L1 cache system using aggressive data of frequent reference patterns

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.9-16
    • /
    • 2022
  • Today, with the advent of the 4th industrial revolution, IoT (Internet of Things) systems are advancing rapidly. For this reason, a various application with high-performance and large-capacity are emerging. Therefore, there is a need for low-power and high-performance memory for computing systems with these applications. In this paper, we propose an effective structure for the L1 cache memory, which consumes the most energy in the computing system. The proposed cache system is largely composed of two parts, the L1 main cache and the buffer cache. The main cache is 2 banks, and each bank consists of a 2-way set association. When the L1 cache hits, the data is copied into buffer cache according to the proposed algorithm. According to simulation, the proposed L1 cache system improved the performance of energy delay products by about 65% compared to the existing 4-way set associative cache memory.