• Title/Summary/Keyword: buckling of laminated plates

Search Result 90, Processing Time 0.02 seconds

A mechanical behavior of composite plates using a simple three variable refined plate theory

  • Bakoura, Ahmed;Djedid, Ibrahim Klouche;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.617-625
    • /
    • 2022
  • A novel three variable refined plate theory (TVRPT) is developed in this article for laminated composite plates for the first time. The theory takes into account the nonlinear variation of transverse shear deformations, and satisfies the boundary conditions of zero traction on the plate surfaces without considering the "shear correction factor". The important characteristic of this new kinematic is that the unknowns numbers is only 3 as is employed in "classical plate theory" (CPT). The numerical results of the current theory are compared with 3D-elasticity solutions and the calculations of "first order theories" and other higher order models found in the literature.

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.

A study on the acoustic emission characteristics of laminated composite structures (복합재료 적층 구조물의 음향방출 특성 연구)

  • 박재성;김광수;이호성
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2003
  • This paper studied the AE(acoustic emission) characteristics of the laminated composite structures. The composite stiffened panels under the compressive loading emitted various AE signals when they buckled or changed the buckling modes. In addition, the failure initiated and propagation generated a lot of complex signals. From the continuous signal generation. we identified when the failures initiated and whether they propagated or not. The single lap joint of laminated plates under tensional load also generated AE signals when bonding region failed. The first failure occurrence and its propagation are monitored by generated AE signals. The characteristics of AE signals used in this analysis are cumulative hits, hit distribution, peak frequency of generated AE waveform and amplitude of signals. The analysis of AE signals shows that continuous increment of cumulative hits can be regarded as damage propagation and three dominant peak frequencies can correspond to typical failure modes in the laminated composites.

Natural frequency characteristics of composite plates with random properties

  • Salim, S.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.659-671
    • /
    • 1998
  • Exercise of complete control on all aspects of any manufacturing / fabrication process is very difficult, leading to uncertainties in the material properties and geometric dimensions of structural components. This is especially true for laminated composites because of the large number of parameters associated with its fabrication. When the basic parameters like elastic modulus, density and Poisson's ratio are random, the derived response characteristics such as deflections, natural frequencies, buckling loads, stresses and strains are also random, being functions of the basic random system parameters. In this study the basic elastic properties of a composite lamina are assumed to be independent random variables. Perturbation formulation is used to model the random parameters assuming the dispersions small compared to the mean values. The system equations are analyzed to obtain the mean and the variance of the plate natural frequencies. Several application problems of free vibration analysis of composite plates, employing the proposed method are discussed. The analysis indicates that, at times it may be important to include the effect of randomness in material properties of composite laminates.

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Simple Method of Analysis for Preliminary Design of the Composite Laminated Primary Structures for Civil Construction

  • Kim, Duk-Hyun-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.121-126
    • /
    • 1991
  • In his recent book, D.H. Kim proposes to use the quasi-isotropic constants by Tsai for the preliminary design of the composite primary structures for the civil construction. Such structures generally require a large number of laminae layers. Simple equations which can predict "exact" values of the buckling strength, the natural frequency of vibration, and the deflection for the special orthotropic laminates are presented. Many laminates with certain orientations lave decreasing values of B$\_$16/ and B$\_$26/ as the number of plies increases. Such laminates, with D$\_$16/=D$\_$26/\longrightarrow0, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the Isotropic plates can be used. Use of some coefficients can produce "exact" value for laminates with such configuration.

  • PDF

The Impact Damage and the Residual Strength of CF/PEEK Laminate Subjected to Transverse Impact under the High Temperature (고온하에서 횡충격을 받는 CF/PEEK 적층재의 충격손상과 잔류강도)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.66-75
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact damages of CF/PEEK laminates are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interfaces$[0^{\circ}_4/90^{\circ}_4]_{9+} A steel ball launched by the air gun collides against CFRP laminates to generate impact damage. The delamination damages are oberved by a scanning acoustic microscope. And various relations are experimentally observed including the impact energy vs. delamination area, the specimen temperature vs. transverse crack, and the impact energy vs. residual bending strength of carbon fiber peek composite laminates subjected to FOD(Foreign Object Damage) under high temperatures.

  • PDF

Thermal Buckling and Vibration Analysis of Composite Laminated Plates Using Shape Memory Alloy Fibers (형상기억합금 선을 삽입한 복합재료 적층판의 열적 좌굴 및 진동 해석)

  • 박재상;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.916-921
    • /
    • 2001
  • 형상기억합금 선(Shape Memory Alloy Fibers : SMA Fibers)을 삽입한 복합재료 평판의 고온 환경에서의 열적 좌굴 및 진동 해석을 유한요소법을 이용하여 수행하였다 1 차 전단변형이론을 적용하여 적층판을 모델링하였고, 온도 변화 효과는 적층판의 전 영역에서 균일한 온도 분포로 가정하였다. 형상기억합금 선의 온도에 대한 비선형 재료 성질을 고려하여 열적 좌굴 해석 수행 시 반복 계산법을 이용하였고, 자유 진동 해석에서는 시스템의 자유도를 줄이기 위하여 Guyan-Reduction(CR)을 사용하였다. 온도 변화와 형상기억합금 선의 체적비(volume fraction) 및 초기 변형률(initial strain) 변화에 따른 임계 온도와 고유 진동수의 특성을 해석하였다.

  • PDF