• Title/Summary/Keyword: buckling effect

Search Result 749, Processing Time 0.028 seconds

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

The Effect of the Area Ratio and Change of Location on the Buckling Stress of Two Rectangular Plates Spot-welded (면적비와 위치변화가 점용접된 두 사각평판의 좌굴응력에 미치는 영향)

  • Han, Geun-Jo;An, Seong-Chan;Sim, Jae-Jun;Lee, Hyeon-Cheol;Jang, Hwal-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.54-59
    • /
    • 2001
  • The stability of a thin plate structure is very crucial problem which results buckling. Because the buckling strength of thin plates is lower than the yield strength of the material, reinforcement plate must be used to increase the buckling strength. And, in this case, spot welding is commonly used, however, the spot welded joints are practically designed by experimental decisions, so it is Inefficient and has the risks of buckling demolition. In this study, two parameters, such as the area ratio and the distance ratio of spot welding which have influence on the buckling strength, should be chosen. Under compressive and shearing load, the effect of two parameters on the critical stress is discussed.

  • PDF

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

A Study on Effect of the Junction's Eccentricity for Buckling Characteristics of Single-Layer Latticed Dome (접합부 편심을 고려한 단층 래티스돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-124
    • /
    • 2001
  • In Single-layer latticed domes with rectangular network which is composed of ring of circumferential direction and rafter of longitudinal direction, that is, rib domes, if we use the cross-membered junction's method for the advantage in fabrication and construction, the eccentricity is occurred in the nodal point of crossing members. This paper is aimed at investigating the buckling characteristics for the effect of eccentricity according to rise-span ratios and distance of eccentricity. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. The maximum decreasing ratio of buckling strength due to the junction's eccentricity is about 60% in models of this paper. 2. In the increasing ratio of buckling strength for rise-span ratio, that of Type 3 models is larger than that of type 2 models. On the other hand, that of Type 2 mode is larger than that of Type 3 for eccentricity-distance. 3. In the viewpoint of the value of buckling strength, that of Type 2 models is larger than that of type 3 models. The effect of the junction's rigidity on buckling strength is not great for overall models. Therefore if we use the cross-membered junction's method for the advantage in fabrication and construction, the method of Type 2 will have the great advantage of that of Type 3.

  • PDF

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Analysis of Elastic Local Buckling of an Orthotropic Compression Member with Asymmetric Edge Stiffeners (비대칭연단보강재가 설치된 직교이방성 압축재의 탄성 국부좌굴해석)

  • 최원창;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic open section thin-walled compression members with asymmetric edge stiffeners. In the analysis, 3 different cases of the second moment of inertia are considered to find the asymmetric edge stiffener effect on the local buckling strength. The analytical study results are presented in the graphical form so that the edge stiffener effects on the local buckling strength can be easily found.

  • PDF

Evaluation and Test of Slenderness Ratio Effect on Buckling Characteristics of Thin Cylindrical Structures Subjecting the Shear Loads (전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성 평가 및 시험)

  • 구경회;김종범;이재한
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.535-543
    • /
    • 2002
  • The purpose of this paper is to investigate the slenderness ratio effect on buckling characteristics of thin cylindrical structures subjecting the shear loads in detail. To do this, the buckling strength evaluations were carried out with using the evaluation formulae proposed by J. Okada. From the results of the buckling strength evaluations, the three types of staled cylindrical test specimen, which have L/R=3.1, 1.6, and 1.0, are determined for the numerical analyses and tests. From results, target slenderness ratio over L/R=3 results in dominant bending buckling mode, smaller slenderness ratio under L/R=1 results in dominant shear buckling mode, and near L/R=1.6 region shows the mixed buckling mode which has the bending and shear buckling mode simultaneously. Most results of buckling characteristics obtained by the numerical analyses and the evaluation formulae we in good agreement with those of tests.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.