Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.1.081

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams  

Meksi, Ali (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Sadoun, Mohamed (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Abbache, Ali (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Meftah, Sid Ahmed (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Steel and Composite Structures / v.44, no.1, 2022 , pp. 81-89 More about this Journal
Abstract
The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.
Keywords
amplitude; axisymmetric beams; buckling; classical theory; functionally graded beams; post buckling;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel and Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603   DOI
2 Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.   DOI
3 Barati, M.R., Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.   DOI
4 Belarbi, M.O., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021a), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.   DOI
5 Ben-Oumrane S., Tounsi, A., Ismail, M., Mohamed, B.B., Mustapha, M. and Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comp. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001.   DOI
6 Benaoum, A., Youzera, H., Abualnour, M., Houari, M.S.A., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method", Struct. Eng. Mech., 80(6), 727. https://doi.org/10.12989/sem.2021.80.6.727.   DOI
7 Bui, T.Q., Khosravifard, .A., Zhang, .C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly mesh free radial point interpolation method", Eng. Struct., 47(0), 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.   DOI
8 David James Lloyd. (2005), "Functionally graded aluminum alloy sheet", U.S. Patent Application No. 10/696,877. https://patents.google.com/patent/US20050092403A1/en.
9 Pham, Q.H., Pham, T.D., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.   DOI
10 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.   DOI
11 Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.   DOI
12 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
13 Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021b), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Institution Eng. (India) Series C., 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.   DOI
14 Abbache, A., Youzera, H., Abualnour, M., Houari, M.S., Meftah, S. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80(2), 201-210. https://doi.org/10.12989/sem.2021.80.2.201.   DOI
15 Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Archive Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.   DOI
16 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
17 Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B. Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077.   DOI
18 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
19 Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005.   DOI
20 Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.   DOI
21 Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021c), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Archives Comput. Methods Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0.   DOI
22 Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math Model, 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.   DOI
23 Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means ofclassical and advanced theories", Mech Adv. Mater. Struct., 17(8), 622-35. https://doi.org/10.1080/15376494.2010.518930.   DOI
24 Gupta, R.K.., Babu, G.J., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem Anal Des., 45(10), 624-631. https://doi.org/10.1016/j.finel.2009.04.001.   DOI
25 She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model, 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.   DOI
26 Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A.R. and Yildirim, A. H.M.E.T. (2012), "Asymptotic investigation of buckled beam nonlinear vibration", Iran. J. Sci. Technol., Transactions Mech. Eng., 36(M2), 107-116.
27 Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6.   DOI
28 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials., 13(7), 1707. https://doi.org/10.3390/ma13071707   DOI
29 Shen, H.S., Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020.   DOI
30 Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.   DOI
31 Akbas, S. D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.   DOI
32 Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.   DOI
33 Al-Basyouni, K.S. and Mahmoud, S.R. (2021), "Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder", Struct. Eng. Mech., 79(5), 593-599. https://doi.org/10.12989/sem.2021.79.5.593.   DOI
34 Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021b), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01452-1.   DOI
35 Benatta M., Mechab I., Tounsi A. And Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020.   DOI
36 Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos Struct., 88(4), 636- 642. https://doi.org/10.1016/j.compstruct.2008.06.006.   DOI
37 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
38 Timoshenko, S.P.X. (1922), "On the transverse vibrations of bars of uniform cross-section", Lond. Edinb. Dubl. Phil. Mag., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.   DOI
39 Ton, L.H.T. (2021a), "A modified shear deformation theory associated with the four-node quadrilateral element for bending and free vibration analyses of plates", Int. J. Eng. Appl. Phys., 1(3), 235-241. https://orcid.org/0000-0002-5195-1856.
40 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. And Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
41 Meksi, A., Belakhdar, K., Bouguenina, O. and Tounsi, A. (2018), "Effect of parabolic-concave thickness variation on the mechanical buckling resistance of simply supported FGM lates", Jordan J. Civil Eng., 12(2). https://jjce.just.edu.jo/issues/paper.php?p=4245.pdf.
42 Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.   DOI
43 Nguyen, TK., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.   DOI
44 Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B. Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.   DOI
45 Yaghoobi, H. and Torabi, M. (2013), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Model, 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037.   DOI
46 Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.   DOI
47 Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotubereinforced beam under axial load", J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083.   DOI
48 Yu, T., Hu, H., Zhang, J.H. and Bui, T.Q. (2019b), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.   DOI
49 Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019a), "A novel size dependent quasi-3D isogeometric beam model for two directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.   DOI
50 Yuan, Y., Zhao, K., Zhao, Y. And Kiani, K. (2020), "Nonlocalintegro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551.   DOI
51 Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.   DOI
52 Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mats., 3(3) 398-411. https://doi.org/10.1177/002199836900300304.   DOI
53 Parvin, N. and Yusefi, A. (2017), U.S. Patent Application, No. 15/456,501. https://patents.google.com/patent/US20170368607A1/en.
54 Pei, Y.L., Geng, P.S. and Li, L.X. (2018), "A modified higherorder theory for FG beams", Eur. J. Mech. A/Solids, 72, 186-197. https://doi.org/10.1016/j.euromechsol.2018.05.008.   DOI
55 Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011.   DOI
56 Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.   DOI
57 Li, C., Shen, H.S. and Wang, H. (2019), "Thermal post-buckling of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Mech. Sci., 152, 289-297. https://doi.org/10.1016/j.ijmecsci.2019.01.002.   DOI
58 Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J.P. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-306. https://doi.org/10.12989/scs.2020.35.2.295.   DOI
59 Li, S.R. and Batra, R.C. (2012), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027.   DOI
60 Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.   DOI
61 Ma, L.S. and Lee, D.W. (2011), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an inplane thermal loading", Eur. J. Mech. A-Solid, 31(1), 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016.   DOI
62 Madenci, E. and Ozkili, Y.P. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.   DOI
63 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
64 Rahimi, G.H., Gazor, M.S., Hemmatnezhad, M. and Toorani, H. (2013), "On the post buckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012.07.034.   DOI
65 Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5.   DOI
66 Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.   DOI
67 Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H. (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.   DOI
68 Youzera, H. and Meftah, S.A. (2017b), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.   DOI
69 Ton-That, H.L. (2021b), "A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates", Facta Universitatis, Series: Mech. Eng., 19(2), 285-305. https://doi.org/10.22190/FUME200629040T.   DOI
70 Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica., 49, 155-168. https://doi.org/10.1007/s11012-013-9780-1.   DOI
71 Youzera, H., Meftah, S.A. and Daya, E.M. (2017a), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 054503. https://doi.org/10.1115/1.4036914.   DOI
72 Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009b), "Flexural vibration and elastic buckling ofa cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175.   DOI
73 Huang, Y.Q. and Li, Q.S. (2004), "Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method", Comput. Methods Appl. Mech. Eng., 193(33-35), 3471-392. https://doi.org/10.1016/j.cma.2003.12.039.   DOI
74 Jena, S.K., Chakraverty, S. and Malikan, M. (2021), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 37(4)., 3569-3589. https://doi.org/10.1007/s00366-020-01018-7.   DOI
75 Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405 16.   DOI
76 Ke, LL., Yang, J. and Kitipornchai, S. (2009a), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003.   DOI
77 Khorshidi, M.A., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110, 1601-1669. https://doi.org/10.1016/j.ijmecsci.2016.03.006.   DOI
78 Kiani, Y. and Eslami, M.R. (2013), "Thermomechanical buckling oftemperature-dependent FGM beams", Lat. Am. J. Solids Struct., 10(2), 223-246. http://dx.doi.org/10.1590/S1679-78252013000200001.   DOI
79 Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.   DOI
80 Youzera, H., Meftah, S.A., Challamel, N. and Tounsi A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B. Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.   DOI
81 Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete., 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.   DOI
82 Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random Vibration of the Functionally Graded Laminates in Thermal Environments", Comput. Method Appl. M., 195, 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.   DOI
83 Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.   DOI
84 Kou, M., Bi, J., Yuan, B. and Wang, Y. (2020), "Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions", Struct. Eng. Mech., 75(3), 339-356. https://doi.org/10.12989/sem.2020.75.3.339.   DOI
85 Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica., 1-16. https://doi.org/10.1007/s10338-021-00295-z.   DOI
86 Eslami, M.R., Eslami, J. and Jacobs, M. (2018). Buckling and Postbuckling of Beams, Plates, and Shells, Switzerland: Springer International Publishing.
87 Fang, W., Yu, T, Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062   DOI