• Title/Summary/Keyword: broadband seismic

Search Result 32, Processing Time 0.026 seconds

Broadband Seismic Exploration Technologies via Ghost Removal (도깨비파 제거를 통한 광대역 탄성파 탐사 기술)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.183-197
    • /
    • 2018
  • In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.

The background noise characteristics of the broadband seismic stations in KMA (기상청 광대역 지진관측소 배경잡음 특성)

  • Nam, Seong-Tae;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.49-55
    • /
    • 2006
  • The purpose of the present study is to analyse characteristics of the background noise for the broadband seismic stations in KMA. It is well known that the background noise arises continuously from long period microseism, sea waves, minute changes of atmospheric pressure, seasonal temperature change of the ground surface, culture activities, and etc. The background noise shows spatial and temporal changes and it has various characteristics such as its spectral amplitudes in frequency domain are not constant Such the background noise gives considerable influences on the quality of seismic record. To investigate annual variations, the background noise was separated into high frequency components of above 1Hz More larger average amplitude is found in winter than other seasons. The average amplitude for 12 seismic stations are compared. It is known that the background noise is considerably larger in stations located in island region such as Jeju, Ulleungdo, and Bagryeongdo seismic stations. However the noise is relatively small in inland stations such as Chuncheon, Chungju and Uljin seismic stations.

  • PDF

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF

Installation of Very Broadband Seismic Stations to Observe Seismic and Cryogenic Signals, Antarctica (남극 지진 및 빙권 신호 관측을 위한 초광대역 지진계 설치)

  • Lee, Won-Sang;Park, Yong-Cheol;Yun, Suk-Young;Seo, Ki-Weon;Yee, Tae-Gyu;Choe, Han-Jin;Yoon, Ho-Il;Chae, Nam-Yi
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • Korea Polar Research Institute (KOPRI) has successfully installed two autonomous very broadband three-component seismic stations at the King George Island (KGI), Antarctica, during the 24th KOPRI Antarctic Summer Expedition (2010 ~ 2011). The seismic observation system is originally designed by the Incorporated Research Institutions for Seismology Program for Array Seismic Studies of the Continental Lithosphere Instrument Center, which is fully compatible with the Polar Earth Observing Network seismic system. The installation is to achieve the following major goals: 1. Monitoring local earthquakes and icequakes in and around the KGI, 2. Validating the robustness of seismic system operation under harsh environment. For further intensive studies, we plan to move and install them adding a couple more stations at ice shelf system, e.g., Larsen Ice Shelf System, Antarctica, in 2013 to figure out ice dynamics and physical interaction between lithosphere and cryosphere. In this article, we evaluate seismic station performance and characteristics by examining ambient noise, and provide operational system information such as frequency response and State-Of-Health information.

Ground Motion Simulation of Scenario Earthquakes in the Nakdonggang Delta Region using a Broadband Hybrid Method and Site Response Analysis (광대역 하이브리드 기법과 지반응답 해석을 통한 낙동강 삼각주 지역의 가상지진 지반운동 시뮬레이션)

  • Kim, Jaehwi;Oh, Junsu;Jeong, Seokho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.233-247
    • /
    • 2024
  • The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.

Shaking Table Test on ASME III Globe Valve with Actuator for Seismic Qualification Program (ASME III 글로브밸브의 내진검증을 위한 진동대시험)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.139-146
    • /
    • 1998
  • The prototype ASME III motor actuated Y-type globe valve has been tested to identify dynamic characteristics. The valve is Seismic Category I equipment and has the function to control water flow in the safety-related system. In this study, two different types of structural identification test i.e. swept sine and broadband random, have been performed at various levels of excitation to verify the effects of test method and excitation level on cross coupling effect as well as natural frequencies and damping values. It was found that swept sine test and broadband random test showed similar natural frequencies, and that the primary interaction was exhibited between horizontal and vertical axes.

  • PDF

Alternative reliability-based methodology for evaluation of structures excited by earthquakes

  • Gaxiola-Camacho, J. Ramon;Haldar, Achintya;Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;Vazquez-Becerra, G. Esteban;Vazquez-Hernandez, A. Omar
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • In this paper, an alternative reliability-based methodology is developed and implemented on the safety evaluation of structures subjected to seismic loading. To effectively elaborate the approach, structures are represented by finite elements and seismic loading is applied in time domain. The accuracy of the proposed reliability-based methodology is verified using Monte Carlo Simulation. It is confirmed that the presented approach provides adequate accuracy in calculating structural reliability. The efficiency and robustness in problems related to performance-based seismic design are verified. A structure designed by experts satisfying all post-Northridge seismic design requirements is studied. Rigidities related to beam-to-column connections are incorporated. The structure is excited by three suites of ground motions representing three performance levels: immediate occupancy, life safety, and collapse prevention. Using this methodology, it is demonstrated that only hundreds of deterministic finite element analyses are required for extracting reliability information. Several advantages are documented with respect to Monte Carlo Simulation. To showcase an applicability extension of the proposed reliability-based methodology, structural risk is calculated using simulated ground motions generated via the broadband platform developed by the Southern California Earthquake Center. It is validated the accuracy of the broadband platform in terms of structural reliability. Based on the results documented in this paper, a very solid, sound, and precise reliability-based methodology is proved to be acceptable for safety evaluation of structures excited by seismic loading.

Seismic capacity re-evaluation of the 480V motor control center of South Korea NPPs using earthquake experience and experiment data

  • Choi, Eujeong;Kim, Min Kyu;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1363-1373
    • /
    • 2022
  • The recent seismic events that occurred in South Korea have increased the interest in the re-evaluation of the seismic capacity of nuclear power plant (NPP) equipment, which is often conservatively estimated. To date, various approaches-including the Bayesian method proposed by the United States (US) Electric Power Research Institute -have been developed to quantify the seismic capacity of NPP equipment. Among these, the Bayesian approach has advantages in accounting for both prior knowledge and new information to update the probabilistic distribution of seismic capacity. However, data availability and region-specific issues exist in applying this Bayesian approach to Korean NPP equipment. Therefore, this paper proposes to construct an earthquake experience database by combining available earthquake records at Korean NPP sites and the general location of equipment within NPPs. Also, for the better representation of the seismic demand of Korean earthquake datasets, which have distinct seismic characteristics from those of the US at a high-frequency range, a broadband frequency range optimization is suggested. The proposed data construction and seismic demand optimization method for seismic capacity re-evaluation are demonstrated and tested on a 480 V motor control center of a South Korea NPP.

Crustal structure beneath broadband seismic station using receiver function (수신함수를 이용한 관측소 하부의 지진파 속도구조)

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.45-49
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-tying, homogeneous layers. The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth, and there are six discontinuity around 2.5km, 6.25km, 12.5km, 22.5km and 27.5km depth, with Moho discontinuity at about 32.5km depth.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (2) (수신함수를 이용한 관측소 하부의 지진파 속도구조 (2))

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.3-7
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-lying, homogeneous layers. Events divide into 4 groups. four azimuths corresponding to events in group a(southwest), b(south), c(southeast), d(northeast). The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth. The conard discontinuity lies around 18 km and moho discontinuity lies range from 30 to 34 km.

  • PDF