Browse > Article
http://dx.doi.org/10.7582/GGE.2018.21.3.183

Broadband Seismic Exploration Technologies via Ghost Removal  

Choi, Woochang (Department of Energy Resources Engineering, Inha University)
Pyun, Sukjoon (Department of Energy Resources Engineering, Inha University)
Publication Information
Geophysics and Geophysical Exploration / v.21, no.3, 2018 , pp. 183-197 More about this Journal
Abstract
In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.
Keywords
Broadband seismic technology; Resolution; Ghost;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Amundsen, L., 1993, Wavenumber-based filtering of marine point-source data, Geophysics, 58(9), 1335-1348.   DOI
2 Amundsen, L., and Landro, M., 2013a, Broadband Seismic Technology and Beyond, GEO ExPro, 10(1).
3 Amundsen, L., and Landro, M., 2013b, Broadband Seismic Technology and Beyond, Part II: Exorcizing Seismic Ghosts, GEO ExPro, 10(2).
4 Amundsen, L., and Landro, M., 2014, Broadband Seismic Technology and Beyond, X: IsoMetrix-Isometric Sampling, GEO ExPro, 11(4).
5 Barr, F. J., and Sanders, J. I., 1989, Attenuation of water-column reverberations using pressure and velocity detectors in a water-bottom cable, 59th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 653-656.
6 Berni, A. J., 1982, Vertical component accelerometer, U.S. Patent No 4,345,473.
7 Berni, A. J., 1984, Marine seismic system, U. S. Patent 4,437,175.
8 Berni, A. J., 1985b, Marine seismic system, U. S. Patent 4,520,467.
9 Brink, M., and Svendsen, M., 1987, Marine seismic exploration using vertical receiver arrays: A means for reduction of weather downtime, 57th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 184-187.
10 Carlson, D. H., Long, A., Sollner, W., Tabti, H., Tenghamn, R., and Lunde, N., 2007, Increased resolution and penetration from a towed dual-sensor streamer, First Break, 25(12), 71-77.
11 Claerbout, J. F., 1976, Fundamentals of geophysical data processing, McGraw-Hill Book Co.
12 Denis, M., Brem, V., Pradalie, F., Moinet, F., Retailleau, M., Langlois, J., Bai, B., Taylor, R., Chamberlain, V., and Frith, I., 2013, Can land broadband seismic be as good as marine broadband?, Leading Edge, 32(11), 1382-1388.   DOI
13 Haggerty, P. E., 1956, Method and apparatus for canceling reverberations in water layers, U.S. Patent No 2,757,356.
14 Jenkins, F. A., and White, H. E., 1957, Fundamentals of optics, McGraw-Hill Book Co.
15 Kallweit, R. S., and Wood, L. C., 1982, The limits of resolution of zero-phase wavelets, Geophysics, 47(7), 1035-1046.   DOI
16 Kim, S., Koo, N., and Lee, H., 2016, Broadband processing of conventional marine seismic data through source and receiver deghosting in frequency-ray parameter domain, Geophys. and Geophys. Explor., 19(4), 220-227 (in Korean with English abstract).   DOI
17 Berni, A. J., 1985a, Low noise mounting for accelerometer used in marine cable, U. S. Patent 4,477,887.
18 Knapp, R. W., 1991, Fresnel zones in the light of broadband data, Geophysics, 56(3), 354-359.   DOI
19 Krail, P. M., and Shin, Y., 1990, Deconvolution of a directional marine source, Geophysics, 55(12), 1542-1548.   DOI
20 Kragh, E., Muyzert, E., Curtis, T., Svendsen, M., and Kapadia, D., 2010, Efficient broadband marine acquisition and processing for improved resolution and deep imaging, Leading Edge, 29(4), 464-469.   DOI
21 Kustowski, B., Tegtmeier-Last, S., Cole, J., Clark, D., and Hennenfent, G., 2013, Curvelet noise attenuation guided by a signal or noise model: case studies, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 4267-4271.
22 Leet, L. D., 1937, A plutonic phase in seismic prospecting, Bull. Seismol. Soc. Amer., 27(2), 97-98.
23 Lindsey, J. P., 1989, The Fresnel zone and its interpretive significance, Leading Edge, 8(10), 33-39.   DOI
24 Moldoveanu, N., Seymour, N., Manen, D. V., and Caprioli, P., 2012, Broadband seismic methods for towed-streamer acquisition, 74th Ann. Internat. Mtg., EAGE, Expanded Abstracts.
25 O'Driscoll, R., King, D., Tatarata, A., and Montico, Y., 2013, Broad-bandwidth data processing of conventional marine streamer data: An offshore West Africa field case study, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 4231-4235.
26 Parkes, G., and Hegna, S., 2011, An acquisition system that extracts the earth response from seismic data, First Break, 29(12), 81-87.
27 Parrack, Alvin L., 1976, Method of marine reflection-type seismic exploration, U.S. Patent No 3,979,713.
28 Paulson, H., Husom, V. A., and Goujon, N., 2015, A MEMS accelerometer for multicomponent streamers, 77th Ann. Internat. Mtg., EAGE, Expanded Abstracts.
29 Posthumus, B. J., 1993, Deghosting using a twin streamer configuration, Geophys. Prospect., 41(3), 267-286.   DOI
30 Pavey, Jr George M., and Pearson, Raymond H., 1966, Method and underwater streamer apparatus for improving the fidelity of recorded seismic signals, U.S. Patent No 3,290,645.
31 Pyun, S., and Park, Y., 2016, A study on consistency of numerical solutions for wave equation, Geophys. and Geophys. Explor., 19(3), 136-144 (in Korean with English abstract).   DOI
32 Ray, Clifford H., and Moore, Neil A., 1982, High resolution, marine seismic stratigraphic system, U.S. Patent No 4,353,121.
33 Ricker, N., 1953, Wavelet contraction, wavelet expansion, Geophysics, 18, 769-792.   DOI
34 Robertsson, J. O., Moore, I., Ozbek, A., Vassallo, M., Ozdemir, K., and Manen, D. J. V., 2008, Reconstruction of pressure wavefields in the crossline direction using multicomponent streamer recordings, 78th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2988-2992.
35 Robinson, E., and Treitel, S., 1980, Maximum entropy and the relationship of the partial autocorrelation to the reflection coefficients of a layered system. IEEE Trans. Acoust., Speech, Signal Process., 28(2), 224-235.   DOI
36 Schneider, W. A., and Backus, M. M., 1964, Ocean-bottom seismic measurements off the California coast, J. Geophys. Res., 69(6), 1135-1143.   DOI
37 Shannon, C. E., 1949, Communication in the presence of noise, Proc. I.R.E., 86(1), 10-21.
38 Sheriff, R. E., and Geldart, L. P., 1995, Exploration seismology, Cambridge university press.
39 Sonneland, L., Berg, L. E., Eidsvig, P., Haugen, A., Fotland, B., and Vestby, J., 1986, 2-D deghosting using vertical receiver arrays, 56th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 516-519.
40 Siliqi, R., Payen, T., Sablon, R., and Desrues, K., 2013, Synchronized multi-level source, a robust broadband marine solution, 83rd Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 56-60.
41 Soubaras, R., and Dowle, R., 2010, Variable-depth streamer-a broadband marine solution, First Break, 28(12), 89-96.
42 Soubaras, R., and Lafet, Y., 2013, Variable-depth streamer acquisition: Broadband data for imaging and inversion, Geophysics, 78(2), WA27-WA39.   DOI
43 Tenghamn, R., and Dhelie, P. E., 2009, GeoStreamer-increasing the signal-to-noise ratio using a dual-sensor towed streamer, First Break, 27(10), 45-51.
44 Tenghamn, S. R. L., Sodal, A., and Stenzel, A., 2007a, Apparatus and methods for multicomponent marine geophysical data gathering, U.S. Patent No. 7,239,577.
45 Tenghamn, R., Vaage, S., and Borresen, C., 2007b, A dualsensor towed marine streamer: Its viable implementation and initial results, 77th Ann. Internal. Mtg. Soc. Expl. Geophys., Expanded Abstract, 989-993.
46 Vaage, S. T., Tenghamn, S. R. L., and Borresen, C. N., 2008, System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers, U.S. Patent No. 7,359,283.
47 Van Melle, F. A., and Weatherburn, K. R., 1953, Ghost reflections caused by energy initially reflected above the level of the shot, Geophysics, 18(4), 793-804.   DOI
48 Widess, M. B., 1973, How thin is a thin bed?, Geophysics, 38(6), 1176-1180.   DOI
49 Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, Soc. Expl. Geophys.
50 Woodburn, N., Travis, T., and Masoomzadeh, H., 2012, Clari-FiTM broadband data from conventional streamer acquisition, GEO ExPro, 9(5).
51 Zhou, Z., Cvetkovic, M., Xu, B., and Fontana, P., 2012, Analysis of a broadband processing technology applicable to conventional streamer data, First Break, 30(10), 77-82.