• Title/Summary/Keyword: broad-band

Search Result 647, Processing Time 0.024 seconds

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method (수열합성법으로 성장된 산화아연 나노막대의 특성 및 열처리 효과)

  • Jeon, Su-Min;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Choi, Hyun-Young;Yim, Kwang-Gug;Kim, Hyeoung-Geun;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.293-299
    • /
    • 2010
  • Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

Absorption Spectra and Functional Group Contents of Peat and Humus Fractions in Korea (한국산(韓國産) 이탄(泥炭)과 토양부식물(土壤腐植物) 획분(劃分)의 흡수(吸收)스펙트럼 및 관능기(官能基)의 함량(含量))

  • Lim, Sun-Uk;Moon, Moo-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 1983
  • To characterize humus fractions in soil, visible, ultraviolet and infrared absorption spectra of humic acids in alkaline solutions and hymatomelanic acids in ethanol solutions extracted by Stevenson's method from paddy rice soils, peats, and volcanic ash soils were analyzed. The spectra patterns of both fractions in visible and ultraviolet ranges did not have any peak and the absorbance decreased as the wavelength increased. Visible and ultraviolet spectra of the solutions from all the peats, volcanic ash soils and paddy rice soil were very similar each other but absorbances were slowly declined in the order of volcanic ash soils, peats and mineral paddy soils. The infrared spectra of the two solutions appeared in a typical pattern, showing a few broad peaks. The main absorption bands were in the regions of $3400cm^{-1}$ (hydrogen bonded OH), near $2900cm^{-1}$ (aliphatic CH), $1720cm^{-1}$ (C=O of COOH, C=O of carbonyl), $1625cm^{-1}$ (aromatic C-C conjugated with C=O and/or COO-), $1400-1450cm^{-1}$ (CH stretch), $1200-1250cm^{-1}$ (CaO stretch of phenolic OH or OH-deformation of COOH) and $1050cm^{-1}$. The hymatomelanic acid fractions, however, had spectra that were characterized especially by very distinct absorption at $2900cm^{-1}$ and $1720cm^{-1}$, for aliphatic CH and carbonyl stretching vibration respectively in addition to the weaker bands for COO- or aromatic CH vibration at $1625cm^{-1}$, as compared to humic acid. No differences were noted in the general patterns of the spectograms of both fractions extracted. Analyses of the functional groups revealed little differences between peats and paddy soils, although total acidity and the content of carboxyl groups were decreased in the order of volcanic ash soils, peats and mineral paddy soils.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF

The study of growth and characterization of CuGaTe$_2$single crystal thin films by hot wall epitaxy (Hot wall epitaxy(HWE) 방법에 의한 CuGaTe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.425-433
    • /
    • 2000
  • The stochiometric mix of evaporating materials for the $CuGaTe_2$single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0 and c_0$ were 6.025 $\AA$ and 11.931 $\AA$, respectively. To obtain the single crystal thin films, $CuGaTe_2$mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is 2.1$\mu\textrm{m}$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of $CuGaTe_2$single crystal thin films deduced from Hall data are $8.72{\times}10{23}$$\textrm m^3$, $3.42{\times}10^{-2}$ $\textrm m^2$/V.s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuGaTe_2$single crystal thin film, we have found that the values of spin orbit coupling $\Delta$s.o and the crystal field splitting $\Delta$cr were 0.0791 eV and 0.2463 eV at 10 K, respectively. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470 eV and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be 0.0490 eV, 0.0558 eV, respectively.

  • PDF