• Title/Summary/Keyword: broad substrate specificity

Search Result 56, Processing Time 0.021 seconds

Characterization of an Alkaline Family I.4 Lipase from Bacillus sp. W130-35 Isolated from a Tidal Mud Flat with Broad Substrate Specificity

  • Kim, Hee Jung;Jung, Won Kyeong;Lee, Hyun Woo;Yoo, Wanki;Kim, T. Doohun;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2024-2033
    • /
    • 2015
  • A gene encoding lipolytic enzyme, lip7-3, was isolated from Bacillus sp. W130-35 isolated from a tidal mud flat. The gene encoded a protein of 215 amino acids with a signal peptide composed of 34 amino acid residues. Lip7-3 belonged to the family I.4 lipase and showed its maximal activity at pH 9.0 and 60℃. Its activity increased in the presence of 30% methanol and, remarkably, increased as well to 154.6% in the presence of Ca2+. Lip7-3 preferred p-nitrophenyl octanoate (C8) as a substrate and exhibited broad specificity for short- to long- chain fatty acid esters. Additionally, Lip7-3 showed a low degree of enantioselectivity for an S-enantiomer (e.g., (S)-methyl-3-hydroxy-2-methylpropionate). It efficiently hydrolyzed glyceryl tributyrate, but did not hydrolyze glyceryl trioleate, fish oil, or olive oil. Its substrate specificity and activation by the solvent might offer a merit to the biotechnological enzyme applications like transesterification in the production of biodiesel.

Substrate Specificity of Alkaline Phosphatase (Alkaline phosphatase의 기질 특이성)

  • ;;E. Waelkens;W. Merlevede
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.571-576
    • /
    • 1993
  • The substrate specificity of the purified rabbit plasma alkaline phosphatase (ALPase) was determined towards a extended range of potential substrates including relatively simple phosphate derivatives as p-NPP and indolyl phosphate, and several synthetic peptides and phosphoproteins. These results further estabilish the broad substrate specificity of these circulating enzymes. Interestingly, the plasma ALPase preferentially dephosphorylates Thr over Ser residues, as demonstrated with a series of synthetic peptides. The latter result is in contradiction to the behaviour of the tissue ALPase, which is thought to the ultimate source of plasma ALPase, and open therefore new perspectives with respective to the origin and "solubilisation" processes of these enzymes. Dephsphrylation of protein substrates by endogenous and isolated plasma ALPases indicates that ALPase probably displays protein phosphatase activity in vivo.

  • PDF

Characterization of Acyl-CoA Oxidases from the Lipolytic Yeast Candida aaseri SH14

  • Ibrahim, Zool Hilmi;Bae, Jung-Hoon;Sung, Bong Hyun;Kim, Mi-Jin;Rashid, Ahmad Hazri Ab;Sohn, Jung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.949-954
    • /
    • 2022
  • The lipolytic yeast Candida aaseri SH14 contains three Acyl-CoA oxidases (ACOXs) which are encoded by the CaAOX2, CaAOX4, and CaAOX5 genes and catalyze the first reaction in the β-oxidation of fatty acids. Here, the respective functions of the three CaAOX isozymes were studied by growth analysis of mutant strains constructed by a combination of three CaAOX mutations in minimal medium containing fatty acid as the sole carbon source. Substrate specificity of the CaAOX isozymes was analyzed using recombinant C. aaseri SH14 strains overexpressing the respective genes. CaAOX2 isozyme showed substrate specificity toward short- and medium-chain fatty acids (C6-C12), while CaAOX5 isozyme preferred long-chain fatty acid longer than C12. CaAOX4 isozyme revealed a preference for a broad substrate spectrum from C6-C16. Although the substrate specificity of CaAOX2 and CaAOX5 covers medium- and long-chain fatty acids, these two isozymes were insufficient for complete β-oxidation of long-chain fatty acids, and therefore CaAOX4 was indispensable.

Partial Purification and Characterization of Halotolerant Alkaline Protease from Halomonas marisflava KCCM 10457 Isolated from Salt-fermented Food

  • In, Man-Jin;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.75-78
    • /
    • 2005
  • Halotolerant protease produced by Halomonas marisflava KCCM 10457 was partially purified through ammonium sulfate precipitation and Sephacryl S-200HR gel permeation chromatography. Optimal pH and temperature of protease were 11.0 and $45^{\circ}C$, respectively. Enzyme activity was inhibited by $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, and $Fe^{3+}$, and selectively inhibited by p-chloromercuribenzoic acid (PCMB), suggesting this enzyme is cysteine protease. The enzyme is halotolerant, because it retained 77% of original activity in presence of 3.33 M NaCl. The protease showed broad substrate specificity to various natural proteins; BSA, casein, egg albumin, gelatin, and hemoglobin.

Substrate Specificity of Cabbage Phospholipase D with Phospholipids Having Different Head Groups

  • 이지은;최명언
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.905-908
    • /
    • 1996
  • A substrate specificity of cabbage phospholipase D (PLD) was studied using the synthetic phospholipids having different head groups. The phospholipids were synthesized from phosphatidylcholine and appropriate bases by transphosphatidylation of PLD. The bases used were ethanolamine, serine, ethanol and γ-hydroxybutyric acid. The phosphatidic acid, the product of PLD, was separated in TLC and measured densitometrically. The kinetic parameters were estimated for each substrate and the effects of pH, SDS, Ca2+ and other metal ions were examined. Vmax values found were 3.75, 2.36, 5.59, 1.63, 2.30 nmol/min/μg protein for phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylethanol, and phosphatidylburytic acid, respectively. These results indicate a broad specificity of cabbage PLD toward phospholipids with different head groups. Particularly phosphatidylserine was most easily hydrolyzed by PLD and its activity did not depend on Ca2+.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Distinctive pH Dependence and Substrate Specificity of Peptide Hydrolysis by Human Stromelysin-1 (Stromelysin-1에 의한 펩타이드 가수분해에서 pH와 기질특이성 연구)

  • ;Marianne V. Sorensen
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.210-217
    • /
    • 2000
  • A kinetic profile of the catalytic domain of stromelysin-1 (SCD) using the fluorescent peptide substrate has been determined by the stopped-flow technique. The pH profile has a pH optimum of about 5.5 with an extended shoulder above pH 7. Three pKa values, 5.0, 5.7, and 9.8 are found for the free enzyme state and two pH independent Kcat/Km values of 4.1$\times$104 M-1 s-1 and 1.4$\times$104 M-1 s-1 at low and high pH, respectively. The profile is quite different in shape with other MMP family which has been reported, having broad pH optimum with two pKa values. The substrate specificity of SCD towards fluorescent heptapeptide substrates has been also examined by thin layer chromatography. The cleavage sites of the substrates have been identified using reverse-phase HPLC method.SCD cleaves Dns-PLA↓L↓WAR and Dns-PLA↓L↓FAR at two positions. However, the Dns-PLA↓LRAR, Dns-PLE↓LFAR, adn Dns-PLSar↓LFAR are cleaved exclusively at one bond. The double cleavages of Dns-PLALWAR and Dns-PLALFAR by SCD are in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis agrees with the structural data that the S1' pocket of SCD is deeper than that of matriysin. The differences observed between SCD and matrilysin may form the basis of understanding the structural relationships and substrate specificities of the MMP family in vivo.

  • PDF

Optimal Conditions and Substrate Specificity for Trehalose Production by Resting Cells of Arthrobacter crystallopoietes N-08

  • Seo, Yi-Seul;Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.357-363
    • /
    • 2011
  • Recently, we found that Arthrobacter crystallopoietes N-08 isolated from soil directly produces trehalose from maltose by a resting cell reaction. In this study, the optimal set of conditions and substrate specificity for the trehalose production using resting cells was investigated. Optimum temperature and pH of the resting cell reaction were $55^{\circ}C$ and pH 5.5, respectively, and the reaction was stable for two hours at $37{\sim}55^{\circ}C$ and for one hour at the wide pH ranges of 3~9. Various disaccharide substrates with different glycosidic linkages, such as maltose, isomaltose, cellobiose, nigerose, sophorose, and laminaribiose, were converted into trehalose-like spots in thin layer chromatography (TLC). These results indicated broad substrate specificity of this reaction and the possibility that cellobiose could be converted into other trehalose anomers such as ${\alpha},{\beta}$- and ${\beta},{\beta}$-trehalose. Therefore, the product after the resting cell reaction with cellobiose was purified by ${\beta}$-glucosidase treatment and Dowex-1 ($OH^-$) column chromatography and its structure was analyzed. Component sugar and methylation analyses indicated that this cellobiose-conversion product was composed of only non-reducing terminal glucopyranoside. MALDI-TOF and ESI-MS/MS analyses suggested that this oligosaccharide contained a non-reducing disaccharide unit with a 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with ${\alpha}$-D-glucopyranosyl-(1,1)-${\alpha}$-D-glucopyranoside. These results suggest that cellobiose can be converted to ${\alpha},{\alpha}$-trehalose by the resting cells of A. crystallopoietes N-08.

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Purification of Aldose Reductase and Decolorization of Dye by the Enzyme

  • Jang, Mi;Kim, Kyung-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.358-361
    • /
    • 2009
  • Aldose reductase was purified to electrophoretic homogeneity from porcine liver. The purified enzyme was a monomer of 36 kDa. The enzyme was strongly inhibited by $Cu^{2+}\;and\;Mg^{2+}$ ions. Incubation of the enzyme with pyridoxal 5'-phosphate led to complete inhibition of enzymatic activity, suggesting that lysine residue is involved at or near the active site of the enzyme. The enzyme exhibited a broad substrate specificity. Furthermore, the enzyme was capable of decolorizing Alizarin, an anthraquinone dye.