• Title/Summary/Keyword: bridge surface

Search Result 616, Processing Time 0.024 seconds

Correlation Between Bulk and Surface Resistivity of Concrete

  • Ghosh, Pratanu;Tran, Quang
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.119-132
    • /
    • 2015
  • Electrical resistivity is an important physical property of portland cement concrete which is directly related to chloride induced corrosion process. This study examined the electrical surface resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders for various binary and ternary based high-performance concrete (HPC) mixtures from 7 to 161 days. Two different types of instruments were utilized for this investigation and they were 4 point Wenner probe meter for SR and Merlin conductivity tester for bulk resistivity measurements. Chronological development of electrical resistivity as well as correlation between two types of resistivity on several days was established for all concrete mixtures. The ratio of experimental surface resistance to bulk resistance and corresponding resistivity was computed and compared with theoretical values. Results depicted that bulk and SR are well correlated for different groups of HPC mixtures and these mixtures have attained higher range of electrical resistivity for both types of measurements. In addition, this study presents distribution of surface and bulk resistivity in different permeability classes as proposed by Florida Department of Transportation (FDOT) specification from 7 to 161 days. Furthermore, electrical resistivity data for several HPC mixtures and testing procedure provide multiple promising options for long lasting bridge decks against chloride induced corrosion due to its ease of implementation, repeatability, non-destructive nature, and low cost.

Reduction of Height of Taylor Cone Caused by Water Surface Discharge and Its Ozone Generation Characteristics (수표면방전의 방전 수돌기의 높이제한과 오존발생특성)

  • Park, Seung-Lok;Kim, Jin-Gyu;Kim, Ju-Yong;Lee, Dae-Hee;Moon, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.334-339
    • /
    • 2001
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by the controlling the height of Taylor cone by installing a mesh electrode, a dielectric bed of glass beads in the just under th surface of the water. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge current oscillograms of the each cases of the mesh electrode and the beds were observed and compared each other to analyze the discharge conditions. The Taylor cone height could be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be reduced greatly by installing the mesh and the glass beads bed just under the water surface. Therefore a higher ozone generation also could be obtained.

  • PDF

Comparative Analysis of Day and Night Time Video Accuracy to Calculate the Flood Runoff Using Surface Image Velocimeter (SIV) (표면영상유속계(SIV)를 활용한 홍수유출량 산정 시 주·야간영상의 정확도 비교분석)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwonkyu;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.359-369
    • /
    • 2015
  • This study analyzed the velocimetry of runoff and measured the flood discharge by applying the SIV (Surface Image Velocimetrer) to the daytime and nighttime flow image data with special reference to Seong-eup Bridge at Cheonmi stream of Jeju during the flow by the severe rainstorm on May 27, 2013. A 1000W lighting apparatus with more than 150 lux was installed in order to collect proper nighttime flow image applied to the SIV. Its value was compared and analyzed with the velocity value of the fixed electromagnetic wave surface velocimetry (Kalesto) at the same point to check the accuracy and applicability of the measured velocity of flow. As a result, determination coefficient $R^2$ values were 0.891 and 0.848 respectively in line with the velocity distribution of the daytime and nighttime image and the flow volume measured with Kalesto was approximately 18.2% larger than the value measured with the SIV.

Flood Runoff Calculation using Disaster Monitoring CCTV System (재난감시용 하천 CCTV를 활용한 홍수유출량 산정)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwonkyu;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.571-584
    • /
    • 2014
  • The present study aims to apply a surface image velocimetry(SIV) system to video images captured with CCTV and estimate the flood discharge. The CCTV was installed at the Hancheon Bridge of the Han Cheon in Jeju Island for disaster surveillance, and seven flood events occurred in 2012 were used. During the image analyses, input parameters, interrogation areas and searching areas were determined with proper calibration procedures. To check for accuracy and applicability of SIV, the velocities and flood discharges estimated by SIV were compared with the measured ones by an electromagnetic surface velocimeter, Kalisto. The comparison results showed fairly good agreements. The RMSE(Root Mean Square Error) values between two instruments showed a range of 4.13 and 14.2, and the determination coefficients reached 0.75 through 0.85. It means that the SIV could be used as a good alternative method for other traditional velocity measuring instruments in measuring flood discharges.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

CPW Phase Shifter and Shunt Stub with Air-Bridge Fabricated on Oxidized Porous Silicon(OPS) Substrate (산화된 다공질 실리콘 기판 위에 제작된 에어브리지를 가진 CPW Phase Shifter와 Shunt Stub)

  • Sim, Jun-Hwan;Park, Dong-Kook;Kang, In-Ho;Kwon, Jae-Woo;Park, Jeong-Yong;Lee, Jong-Hyun;Jeon, Joong-Sung;Ye, Byeong-Duck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.11-18
    • /
    • 2002
  • This paper presents a CPW phase shifter and shunt stub with air-bridge on a 10-${\mu}m$-thick oxidized porous silicon(OPS) substrate using surface micromachining. The line dimensions of the CPW phase shifter was designed with S-W-Sg = 100-30-400 ${\mu}m$. And the width and length of the air-bridge with "ㄷ“ shape were 100 ${\mu}m$ and 400-460-400 ${\mu}m$, respectively. In order to achieve low attenuation, stepped air-bridge CPW phase shift was proposed. The insertion loss of the stepped air-bridge CPW phase shift is more improved than that of no stepped air-bridge CPW phase shift. The measured phase characteristic of the fabricated CPW phase shifter is close to 180$^{\circ}$ over a very broad frequency range of 28 GHz. The measured working frequency of short-end series stub is 28.7 GHz and the return loss is - 20 dB. And the measured working frequency of short-end shunt stub is 28.9 GHz and the return loss is - 23 dB at midband. As a result, the pattering of stub in the center conductor of CPW lines can offer size reduction and lead to high density chip layouts.

A Comparison Study on the Design of Dynamic Response appears on Bridge as operation of Light Railway Train (한국형 경량 전철 주행시 동적 응답 처리의 설계 기준 비교 연구)

  • Yeon, sang-ho;Kang, sung-won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.792-795
    • /
    • 2008
  • AGT system is a kind of light railway train. AGT system use of concrete track and rubber tire, so it can be reduce the noise and vibration, compare to the normal train system. And, the dynamic responses of normal bridge are influenced by the dynamic characteristics of bridge, the speed of vehicle and the surface roughness of railway. But the AGT system bridge is influenced not only the above facts but also the guiderail unevenness, because, AGT vehicle steered by guiderail. So, in this study, optimized service condition is suggested for the design and operation of AGT system, by the means of experimental study. The experiments are executed for PSC bridge with length of 30m, at the AGT test line in Kyongsan. The test results are compared and investigated according to the prominence. In the test result, the guiderail prominence influenced on the dynamic response of bridge. It shows a increase as compared with no guiderail prominence in the dynamic response value acceleration, displacement, stain.

  • PDF