• Title/Summary/Keyword: bridge load rating

Search Result 66, Processing Time 0.022 seconds

A Study on the Computation of Overload Probability Based on Bridge Load Rating Factor (교량내하력 값에 기초한 초과하중 확률 계산에 관한 연구)

  • Yang, Seung-Ie;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2003
  • In order to rate current bridge load carrying capacity, typically two methods are used. These are Allowable Stress Rating (ASR) and Load Factor Rating (LFR). Using the rating factors, there are many attempts to make a connection between rating factors and probability concept. The main purpose of the paper is computing the probability of overload using rating factors and probability concept. In this paper, the load rating methods are briefly explained, and the probability concept is connected to rating factors by using live load from Weigh-in-Motion (WIM). Based on the live load model and rati ng factor, the computation procedure of the probability of overload is explained.

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

Rating and Lifetime Prediction of a Bridge with Maintenance (유지관리보수가 된 교량의 내하력평가 및 잔존수명 예측)

  • Seung-Ie Yang;Han-Jung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.108-115
    • /
    • 2003
  • Bridges are rated at two levels by either Load Factor Design (LFD) or Allowable Stress Design (ASD). The lower level rating is called Inventory Rating and the upper level rating is called Operating Rating. To maintain bridges effectively, there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life from a system reliability viewpoint. The lifetime functions are introduced and explained to predict the time-dependent failure probability. The bridge studied in this paper was built 30 years ago in rural area. For this bridge, the load test and rehabilitation were conducted. The time-dependent system failure probability is predicted with or without rehabilitation. As a case study, an optional rehabilitation is suggested, and fir this rehabilitation, load rating is computed and the time-dependent system failure probability is predicted. Based on rehabilitation costs and extended service lifes, the optimal rehabilitation is suggested.

Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges (강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Beom Soo;Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • As girders and towers in cable-stayed bridges are subject to bending moments as well as axial forces, the conventional load rating equation, which considers only the single force effect, cannot be used to evaluate the rating factors of cable-stayed bridges. The load rating equation for components in cable-stayed bridges is not currently established yet. In this paper, we propose load rating equations for girders and towers in cable-stayed bridges using the interaction equations for beam-column members. Moving load analyses were performed for the cases of a maximum axial compressive force, maximum positive moment and maximum negative moment for each component in cable-stayed bridges and detailed procedures to apply proposed equations were presented. The Dolsan Grand Bridge was used to verify the validity of proposed equations. The conventional load rating equation overestimates rating factors of girders and towers in the Dolsan Grand Bridge, whereas proposed equations properly reflect the axial-flexural interaction behaviour of girders and towers in cable-stayed bridges.

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

A Conversion of Load Carrying Capacity for Existing Steel Box Girder Bridge Based on Limit State Design Method (한계상태설계법에 의한 기존 강박스거더교의 내하력 환산)

  • Noh, Dong-Oh;Kyung, Kab-Soo;Park, Jin-Eun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.89-96
    • /
    • 2018
  • Bridge structures are a socially important infrastructure and safety management of bridges during the public service period is important. Steel box girder bridges, which account for a large percentage of road bridges, have been designed by allowable stress design method(ASD) and load carrying capacity have been evaluated using ASD. Although design specification has recently been changed to limit state design method(LSD), in most cases, ASD is still used for load carrying capacity evaluation. In this study, the two design methods were used to compare the results of a load rating factor evaluation on a number of bridges, and we are going to find out how to convert the existing rating factor by ASD into rating factor by LSD. The results of this study are expected to can be used as a basis for determining the need for reinforcement and evaluating load carrying capacity by LSD in bridge maintenance.

An Improvement for Evaluating Load Carrying Capacity by Passing Vehicles of PSC-BOX Bridge (PSC박스 교량의 통행차량에 의한 내하력 평가기법 개선)

  • Shin, Jae-In;Park, Chang-Ho;Lee, Sang-Sun;Lee, Beyong-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.147-151
    • /
    • 2007
  • Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. This paper presents the development of a method for determining the response modification factor, using traffic load. The proposed method is based on the results of computer simulations of traffic action effects. A comparison between the proposed method and the present method shows good agreement in estimating the modified load carrying capacity of bridges.

Evaluation of Rating Factor for Main Components in Steel Cable-Stayed Bridges (강사장교 주요부재의 내하율 산정)

  • Choi, Dong-Ho;Yoo, Hoon;Shin, Jay-In;Song, Won-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.163-176
    • /
    • 2006
  • The paper proposes rating equations for main components such as girders, towers and cables in cable-stayed bridges. Load rating equations for girders and towers are proposed using stress and stability equations and load rating equation for cables is presented. A moving load analysis is performed and distribution types of live loads are determined for the cases of a maximum axial tensile force, a maximum axial compressive force, a maximum positive and a negative moment for each component. The Dolsan Grand bridge is used to verify a validity of proposed equations, The conventional rating equation overestimates rating factors of girders and towers in the Dolsan Grand bridge, whereas proposed rating equations properly reflect the axial-flexural interaction behavior of girders and towers in cable-stayed bridges.

Analysis of Live Load Factor for Bridge Evaluation Through Reliability Based Load Factor Calibration (신뢰도기반 하중계수 캘리브레이션을 통한 교량 평가 활하중계수 분석)

  • Yoo, Min-Sun;Kim, Kyung-Hyun;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.212-221
    • /
    • 2022
  • In this paper, the evaluation procedure applying the limit state design method is studied to be consistent with the newly issued bridge design code in Korea. The live load factor for evaluation is proposed by calibrating for the target reliability index through reliability analysis. Using the actual bridge information collected for the representative bridge types in Korea, the load effects of the design live loads for the previous and current design codes are calculated and compared. The live load factor is calibrated through reliability analysis using the minimum required strength which equals to the load effect obtained for the example bridge. Bridge evaluation is performed by applying the live load factors for the evaluation level as well as design level. The load rating result is generally increased by applying the limit state design method compared to the previous design method and applying the proposed load factor for lowered target reliability index further increased the rating result.