• Title/Summary/Keyword: bridge girder

Search Result 1,303, Processing Time 0.023 seconds

Application of FRP-Concrete Composite Deck to Cable Stayed Bridge (FRP-콘크리트 합성 바닥판의 사장교 적용)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • A modified FRP-concrete composite deck applicable to cable stayed bridge with long girder-to-girder span is proposed, and its design and economical efficiency are presented. The existing FRP-concrete composite deck has low section stiffness due to adoption of GFRP panel with low elastic modulus, which arrives at difficulty in meet of serviceability limit such as deck deflection. So a new-type FRP-concrete composite deck, named precast FRP-concrete deck, is developed by extensioning concrete at the both ends of FRP-concrete composite deck, which brings the effect of reduction of net span length of deck. Compared to the existing FRP-concrete composite deck this modified deck has the advantage of increasing span length but slightly increases self weight. For this type of deck the section optimization is carried out for the cases of simply supported on girder and composite to girder. The optimized deck was applied to cable stayed bridge with a center span length of 540m, and as a result it is verified that PFC deck can be applied efficiently to cable stayed bridge due to reduction of quantity of upper structure.

  • PDF

Evaluation of Effective Temperature for Estimate Design Thermal Loads in Steel Deck of Steel Box Girder Bridges (강상자형교의 강바닥판에서 설계온도하중을 위한 유효온도 산정)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Choi, Chul-Ho;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2013
  • A present LSD (limited state design) code for temperature load in the domestic bridge design has applied a uniform standard for various bridge types. In this study, in order to calculate the effective temperature, a specimen of steel box girder bridge section with real size dimension was manufactured. For a year, the temperature data were measured at the 18 point in steel deck of steel box girder bridges specimen. Effective temperature within the cross section according to atmospheric temperature was calculated by this experiment data. The analyzed results were very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design.

Design and Construction of Twin Steel Girder Bridge using the Precast Concrete Full depth deck (프리캐스트 바닥판을 적용한 소수거더교의 설계 및 시공)

  • Kim, In-Gyu;Ma, Hyang-Wook;Oh, Hyun-Chul;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.137-140
    • /
    • 2008
  • Minimizing the girder number and appling the long span deck of plate girder bridge is the main factors in the practical and economic design of the Twin Steel Girder Bridge. Therefore, it is important to verify the ability of the long span concrete deck. In this paper, to improve the problem, the precast concrete full depth deck has been used instead of cast-in-place concrete deck. The precast concrete full depth deck having longitudinal and transverse prestress is efficient to design of the long span concrete slabs. This paper introduces the design concept of Twin Steel Bridge using the precast concrete full depth deck and applied design case.

  • PDF

Development of Slender Aerodynamic Girder for Suspension Bridges (현수교 세장 내풍 단면의 개발)

  • Kwon, Soon-Duck;Lee, Myeong-Jae;Cho, Eukyung;Lee, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.241-256
    • /
    • 2010
  • This study intends to develop an aerodynamic girder for suspension bridge with width corresponding to 1/70 of the main span length. In the first step of present study, parametric study for the effects of major structural properties on aerodynamic stability of bridges was performed. The span length and natural frequency of bridges were found to be free from girder width, girder height, and aspect ratio of width to height. The empirical equation according to confidence interval was proposed to estimate the natural frequencies of bridges from span length. From the sensitivity analysis, it was revealed that the torsional frequency was dominant parameter among various structural properties that affected flutter velocity mostly. The final aerodynamic bridge section which satisfied the flutter criteria was found from section wind tunnel tests for 30 cross sectional models. The aerodynamic stability of the developed cross section was verified by multimode flutter analysis. The present economical cross section can be used for long span suspension bridge.

An Experimental Study on the Application of FRP Tube to the Struts of PSC Box Girder Bridge (스트럿을 가진 PSC 박스거더교의 FRP 외양관 적용성 평가를 위한 실험연구)

  • Song, Jae-Joon;Hwang, Yoon-Koog;Lee, Young-Ho;Lee, Seung-Hye
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.179-185
    • /
    • 2009
  • In recent, the investigations related to the FRP(Fiber Reinforced Polymers) have been increased due to their superior material and mechanical properties such as environmental resistance, high specific strength and stiffness. Considering these advantages, the FRP tube may be proper for strut on the PSC box girder bridge that can maximize the efficiency of cross section and are effective on economics and aesthetics of bridges. In this research, the specimen tests of the FRP tube and compression tests of the concrete member enclosed with the FRP were performed in order to evaluate the suitability of the FRP tubes, which are applied to the PSC box girder bridge with strut. The specific strength of concrete and the energy absorbing capacity as well as ductility were increased according to the experimental results, and it was found that FRP tubes have sufficient safety as strut member.

Structural Analysis Models to Develop Live Load Distribution Factors of Simply Supported Prestressed Concrete I-Girder Bridge (활하중 분배계수식 개발을 위한 I형 프리스트레스트 콘크리트 거더 교량의 구조해석 모델)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Structural analysis models to develop live load distribution factors of simply supported prestressed concrete I-girder bridge should have the precision of the analysis results as well as modeling simplicity. This is due to the numerous frequency of structural analysis needed while developing live load distribution factors. In this study, an appropriate structural analysis model is selected by comparing previous researchs studies and models used in practical design. Also, the influence by the flexural stiffness of barrier and diaphragm on the live load distribution had been analyzed through comparing the numerical analysis and experimental tests. As a result, the model that the eccentric girder and the barrier and diaphragm are connected to the deck plate was appropriate in satisfying both accuracy and simplicity for structural analysis of simply supported prestressed concrete I-girder bridge. However, the barrier was analyzed to have insignificant influence on the live load distribution in spite of its variation of stiffness. The eccentric diaphragm showed little influence at 25% or higher of flexural stiffness. From the results, a model that the girder is rigidly connected to the deck plate in consideration of the eccentricity, the barrier is ignored and the whole section of diaphragm is supposed to be valid without eccentricity is decided as the most appropriate structural model to develop the live load distribution factors of simply supported prestressed concrete I-girder bridge in this study.

Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping (제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.297-302
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distortional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show an extensive parametric study on distortional behavior. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

FE Model Updating on the Grillage Model for Plate Girder Bridge Using the Hybrid Genetic Algorithm and the Multi-objective Function (하이브리드 유전자 알고리즘과 다중목적함수를 적용한 플레이트 거더교의 격자모델에 대한 유한요소 모델개선)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, a finite element (FE) model updating method based on the hybrid genetic algorithm (HGA) is proposed to improve the grillage FE model for plate girder bridges. HGA consists of a genetic algorithm (GA) and direct search method (DS) based on a modification of Nelder & Mead's simplex optimization method (NMS). Fitness functions based on natural frequencies, mode shapes, and static deflections making use of the measurements and analytical results are also presented to apply in the proposed method. In addition, a multi-objective function has been formulated as a linear combination of fitness functions in order to simultaneously improve both stiffness and mass. The applicability of the proposed method to girder bridge structures has been verified through a numerical example on a two-span continuous grillage FE model, as well as through an experimental test on a simply supported plate girder skew bridge. In addition, the effect of measuring error is considered as random noise, and its effect is investigated by numerical simulation. Through numerical and experimental verification, it has been proven that the proposed method is feasible and effective for FE model updating on plate girder bridges.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.