• Title/Summary/Keyword: bridge damage

Search Result 769, Processing Time 0.034 seconds

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Influence of Incidence Direction of Seismic Wave on the Probabilistic Seismic Fragility Assessment of Bridges (교량의 확률론적 지진취약도에 대한 지진파의 입사방향성의 영향)

  • Sina Kong;Yeeun Kim;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.151-162
    • /
    • 2024
  • As the incidence direction of ground motion (or seismic wave) changes, the seismic response of the structure will also change according to that direction. In order to analyze the effect of the seismic response of the example bridge according to the direction of incidence of ground motion, the acceleration response spectra (Sa-T1) corresponding to the 1-second period obtained for various angles of incidence were obtained. Using Sa-T1, 40 sets of orthogonal pairs of horizontal component seismic waves corresponding to 5 types of percentiles were generated. Seismic vulnerability analysis of the bridge piers was performed by obtaining the seismic response of an example bridge according to the direction of incidence of ground motion. By analyzing the seismic vulnerability analysis of seismic waves corresponding to five types of percentiles, it was found that the median value of the seismic vulnerability curve differs by about 1.2 to 2.6 times depending on the incident direction of the seismic wave. In other words, depending on the incidence direction of seismic waves, the degree of damage to the bridge structure can vary by about 1.2 to 2.6 times.

Can we substitute the intuition of an experienced bridge inspector by monitoring?

  • Wenzel, Helmut;Tanaka, Hiroshi;Hollrigl-Binder, Michaela;Allmer, Helga
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.577-592
    • /
    • 2015
  • Damage quantification is a major goal of the SHM community. Methodologies to introduce a quantity for actual condition of a structure into the assessment process are desired. The idea that the condition of a structure is represented in the character of its dynamic response is fully accepted by the SHM community. The VCLIFE methodology quantifies condition analyzing input from monitoring.

An Experimental Study of Seismic Retrofit on the Viaduct Bridge of Rail Transit (철도 고가교 기둥의 내진성능에 관한 실험적 연구)

  • Kim, Jinho;Shin, Hongyoung;Park, Yeonjun;Hur, Jinho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.616-622
    • /
    • 2012
  • Earthquake damage of viaduct bridge of railroad may give rise to social loss due to transport restrictions greater than cost of structural recovery. Therefore, viaduct bridge of railroad should have ensure adequate seismic performance. But, results of seismic performance evaluation, many of seismic retrofit was required. In this study, five scale models of columns were made and four of them were reinforced by HT-A(HyperTex & perforate Aluminum) which is improved than existing method. Testing the columns by constant axial load and cyclic lateral displacements, seismic performance of columns has been verified from the result of evaluating the stiffness, ductility and energy dissipation capacity.

Maintenance of the Sea-crossing Bridge for Ship Collision Problems (선박충돌 문제에 대한 해상교량의 유지관리)

  • Bae, Yong-Gwi;Lee, Seong-Lo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.56-64
    • /
    • 2016
  • Damage of sea-crossing bridge by ship collision is related to estimate frequencies of overloading due to impact, and bridge accordingly must be designed to satisfy related acceptance criteria. Another important aspect is the management on increment of collision risk during the service period. In this study, related plan, main span length, air draft clearance and collision risk are analyzed for the interim assessment of Incheon Bridge focusing on the ship collision problem. In particular, for the increment of collision risk, the optimized navigation speed is proposed by reviewing the research findings and navigation guidelines etc. as a temporary expedient. Also basic procedure for reasonable prediction of target vessel and passage is established and probabilistic prediction method to embrace the uncertainty of the prediction is proposed as a fundamental solution. It is necessary to conduct further research on collision risk management and promptly carry out interim assessments of other marine bridges.

Evaluating the Load Carrying Capacity of Aged Bridges in Consideration of the Functional Deterioration of Point Parts (지점부의 기능저하를 고려한 노후교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • Structural analysis used to evaluate the load carrying capacity of a bridge should implement behavioral characteristics similar to the actual behaviors of the structure through loading tests, but it is not feasible in many cases due to the behavioral characteristics of points, inadequate modeling method in structural analysis, errors in loading tests, changes in strength and rigidity resulting from cross-sectional damage, etc. This problem can be more serious if bridge bearings have been damaged or were not installed and, consequently, the bearings do not function properly. This study produced results similar to actual behaviors using a structural analysis model built with support moment derived from the difference $\Delta{\delta}$ between measured deflection obtained by confining the cantilever segment of a solid beam and calculated deflection under a unrestrained condition. When the load carrying capacity of a bridge in operation was evaluated in consideration of the confinement condition of supports, the result was 15~19% lower than load carrying capacity calculated by the existing method.

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

Development of Inspection Robotic System for a Bridge Structure Based on Capstone Design (창의적 공학설계에 근거한 교량 조사용 탐사로봇 시제품 개발)

  • Yang, Kyung-Taek;Jeong, Suk-Won
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.143-148
    • /
    • 2011
  • In this study, the damage to the bridge structure such as the crack and water leakage was assessed due to the increase of the vehicle load and traffic on the roads. In order to make this into the database, as a part of the automation system development for the bridge maintenance, the students themselves designed and developed their own inspection robotic system based on the idea of robots currently being developed overseas. Its field testing was conducted and its applicability assessed. During the design and fabrication, its connection to the details of the unit course taken in the undergraduate level was focused. In terms of new product development, the field application was possible due to the support of the academic-industrial cooperation firms. Furthermore, through the survey of the students, the improvements in the practical skills of the students who participated in this development process was affirmed.

  • PDF

An Experiment on Redundancy in Simple Span Two-Girder Bridge - Effects of Lateral Bracing (단경간 2-거더교의 여유도 평가 실험-수평브레이싱의 효과)

  • Park, Yong Myung;Joe, Woon Do Ji;Hwang, Min Oh;Lee, Dae Yong;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents the results of an experimental study to evaluate the redundancy in two plate-girder bridges, which are generally classified as non-redundant load path structures. The study was performed at a time when one of the two girders was damaged. The bottom lateral bracing was considered the experimental variable, and two 1/5-scale bridge specimens of simple span with and without a lateral bracing system were fabricated. Loading tests were first performed on the intact specimens without a cracked girder, within an elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and the concrete deck redistributed some of the load to the uncracked girder, but the lateral bracing system played an important role in improving the redundancy during the damage and was also effective for load redistribution even when the bridge was intact.