• 제목/요약/키워드: breast cancer stem cells

검색결과 43건 처리시간 0.029초

High Levels of Hyaluronic Acid Synthase-2 Mediate NRF2-Driven Chemoresistance in Breast Cancer Cells

  • Choi, Bo-Hyun;Ryoo, Ingeun;Sim, Kyeong Hwa;Ahn, Hyeon-jin;Lee, Youn Ju;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.368-379
    • /
    • 2022
  • Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.

Structure-Activity Relationship of Xanthones from Mesua daphnifolia and Garcinia nitida towards Human Estrogen Receptor Nagative Breast Cancer Cell Line

  • Ee, G.C.L.;Lim, C.K.;Rahmat, A.
    • Natural Product Sciences
    • /
    • 제11권4호
    • /
    • pp.220-224
    • /
    • 2005
  • Extensive chemical studies on the stem bark extracts of two Guttifereous plants namely Mesua daphnifolia and Garcinia nitida have led to the isolation of eight xanthones. Mesua daphnifolia gave cudraxanthone G (1), ananixanthone (2), 1,3,5-trihydroxy-4-methoxyxanthone (3) and euxanthone (4) while Garcinia nitida gave inophyllin B (5), 1,3,7-trihydroxy-2,4-bis (3-methylbut-2-enyl)xanthone (6), 3-isomangostin (7) and rubraxanthone (8). All these compounds were assayed against the MDA-MB-231 (human estrogen receptor negative breast cancer) cells. A structure-activity relationship study showed that structurally, all the 1, 3-oxygenated xanthones which carried unsaturated prenyl side chains (either 3-methylbut-2-enyl or 1,1-dimethyl-2-propenyl) at carbones C-2 and C-4 in the xanthone ring A are essential for the outstanding activities in the assay.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

인간 유방암 줄기세포에서 레몬잎 메탄올 추출물의 항암 효능 (Anticancer Activities of the Methanolic Extract from Lemon Leaves in Human Breast Cancer Stem Cells)

  • 문정용;;현호봉;;조민환;한수영;이동선;안광석
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.219-226
    • /
    • 2015
  • 본 연구에서는 레몬 잎 메탄올 추출물(MLL)의 인간 유방암 줄기 세포인 MCF-7-SC에 대한 항암 활성을 조사하였다. MLL이 MCF-7-SC에서 apoptosis를 유도하였으며, 이를 apoptotic body의 형성, sub-G1 phase 및 annexin V-positive 세포와 Bax/Bcl-2 ratio의 증가, caspase-9과 caspase-3의 활성화 및 PARP의 절 단을 통하여 확인하였다. 동시에 MCF-7-SC에서 MLL은 acidic vesicular organelles의 형성, LC3-II의 축적 증가, Akt/mTOR/p70S6K의 활성 억제 등을 통하여 autophagy를 유도하였다. Epithelial-mesenchymal transition (EMT)는 세포가 전이 상태를 획득하기 위한 중요한 과정이며, 이 기작은 암세포가 전이되는 것을 억제함에 있어서 중요한 표적이 된다. 낮은 농도에서의 MLL은 epithelial 마커 단백질인 E-cadherin이 증가와 mesenchymal 마커 단백질인 Snail과 Slug의 발현 감소를 통해 EMT 과정을 저해함으로써 MCF-7-SC에서 항전이 활성을 나타내었다. 본 연구에서는 레몬 잎 메탄올 추출물이 농도 의존적으로 유방암 줄기세포에 대해 세포 독성과 항전이 활성을 나타내고 있으며, 따라서 레몬잎은 항암 소재로서의 개발 가능성이 높은 식물이라고 사료된다.

암줄기세포의 특성 및 면역관문억제 (Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition)

  • 최상훈;김형기
    • 생명과학회지
    • /
    • 제29권4호
    • /
    • pp.499-508
    • /
    • 2019
  • 암줄기세포는 전이와 재발의 주요한 요인이 되는 자가재생능력, 분화할 수 있는 능력, 치료에 대한 저항성 및 암 형성 능력의 특성을 가진다. WNT/${\beta}$-catenin, Hedgehog, Notch, BMI1, BMP 및 TGF-${\beta}$와 같은 암줄기세포의 특성을 획득 및 유지할 수 있는 신호기전의 연구 결과가 존재하지만, 현재까지 선택적으로 암줄기세포를 표적할 수 있는 치료 전략은 미미하다. 최근, 면역관문억제제인 CTLA-4, PD-1/PD-L1 단일클론항체는 흑색종, 폐암, 췌장암 및 혈액암에 괄목할만한 임상 시험 결과를 나타냈으며, 긴 항암지속효과와 적은 부작용은 기존 항암제보다 개선 된 모습을 보였다. 또한 두경부편평상피암, 흑색종, 유방암 줄기세포를 선택적으로 제거 하였다. 위의 결과를 종합하면, 면역관문억제제는 이전 항암제에 비해 효과적인 항암전략이며, 동시에 암줄기세포를 선택적으로 제거할 수 있는 가능성을 시사한다. 따라서 본 리뷰에서는 암줄기세포와 면역관문억제제의 이해를 통해, 면역관문억제제의 암줄기세포 표적 가능성에 대해 고찰하고자 한다.

꾸지뽕나무 메탄올 추출물의 세포독성 (Cytotoxicity of Methanol Extracts from Cudrania tricuspidata Bureau)

  • 최소라;유동현;장익;안민실;송은주;서상영;최민경;김영선;김명곤;최동근
    • 한국약용작물학회지
    • /
    • 제20권3호
    • /
    • pp.153-158
    • /
    • 2012
  • In order to develop as a natural source of anticancer materials of Cudrania tricuspidata, the cytotoxicity of methanol extracts by harvesting parts and times against 8 cell lines including 293 (normal kidney cells) and A-431 (epidermoid carcinoma cells) were investigated using MTT assay. All harvesting parts had hardly cytotoxicity against 293. And methanol extracts of stem bark and root bark showed very high cytotoxicities against 7 cancer cell lines. The cytotoxicity was the highest against HeLa (cervix adenocarcinoma cells) and followed by MCF-7 (breast adenocarcinoma cells), AGS (stomach adenocarcinoma cells), HT-29 (colon adenocarcinoma cells), HepG2 (hepatoblastoma cells), A549 (lung carcinoma cells) and A-431. By the way, leaf extract had a cytotoxicity against only AGS and ripe fruit extract had no cytotoxicity. Among harvesting times, the cytotoxicity of root bark were high from April to September but that of stem bark showed a little difference. These results showed that anticancer activities of Cudrania tricuspidata extracts were eventful changes by harvesting parts and times.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.