• 제목/요약/키워드: breast cancer chemoprevention

검색결과 27건 처리시간 0.028초

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression

  • Kim, Min Soo;Lee, Won Sung;Jin, Wook
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.258-265
    • /
    • 2016
  • In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.

Modulations of Bcl-2/Bax Families were Involved in The Chemopreventive Effects of Licorice Root in Mcf-7 Human Breast Cancer Cell

  • Jo, Eun-Hye;Hong, Hee-Do;Kim, Sung-Hun;Lee, Yong-Soon;Kang, Kyung-Sun
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.111-111
    • /
    • 2003
  • Recently, cancer chemoprevention with strategies using foods and medicinal herbs has been regarded as one of the most visible fields for cancer control. The genistein in soy, the American ginseng and the resveratrol in a grape are well known as that has antiproliferative properties in human breast cancer.(omitted)

  • PDF

Chemopreventive Effects of Hydatid Disease on Experimental Breast Cancer

  • Altun, Ahmet;Saraydin, Serpil Unver;Soylu, Sinan;Inan, Deniz Sahin;Yasti, Cinar;Ozdenkaya, Yasar;Koksal, Binnur;Duger, Cevdet;Isbir, Cemil;Turan, Mustafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1391-1395
    • /
    • 2015
  • Breast cancer is one of the most common and letal cancers in all over the world. Since there have been significant improvements in treatment of breast cancer, there is still a big need for alternative approaches. In this study, we aimed to investigate protective role of hydatid disease against breast cancer. Twenty Wistar rats were divided into two groups of 10 rats each Group I (control) and Group II. In Group II intraperitoneal hydatidosis was performed. Then DMBA was applied to mammary tissues of all rats. Immunohistochemistry studies for Ki-67 and S-100 in the tumoral tissue sections of DMBA induced mammary tumor in rats were performed. TUNEL Assay was used to detect apoptotic cells of tumoral tissue. In vivo anticancer activity testing was carried out by preventing the tumorigenesis by DMBA in mammary tissue of rats. The expressions of the Ki-67 and S-100 protein decreased in rats who had Hydatid Disease (HD) (Group II), compared with the control rats (Group I). TUNEL positive cells were higher in rats with HD (Group II), compared with the control rats (Group I). In vivo studies showed that HD prevented the tumorigenesis by DMBA in mammary tissue of rats with 50 percent.In the light of the evidence the present study showed that HD may have chemopreventive effects on DMBA induced breast cancer.

해양심층수의 cytochrome P450 1A1, aromatase 및 MMP-9 활성 억제 효과 (Effect of Deep Sea Water on Cytochrome P450 1A1, Aromatase and MMP-9.)

  • 손윤희;김미경;남경수
    • 생명과학회지
    • /
    • 제18권4호
    • /
    • pp.503-508
    • /
    • 2008
  • 동해 해양심층수의 유방암예방 효능과 전이에 미치는 영향을 알아보기 위해 cytochrome P450 1A1 활성과 aromatase 활성 및 유방암세포의 침윤성, 이와 관련된 MMP-9 의 활성과 그 단백질 발현에 미치는 영향을 조사하였다. 해양심층수는 체내외의 여러 화학물질을 체내에서 활성화시켜 발암이나 돌연변이 등을 유발시키는 것으로 알려진 cytochrome P450 1A1을 경도의존적으로 저해시켰다. 또한 호르몬 의존성 유방암의 진행에 관여하는 aromatase의 활성도 경도의존적으로 저해시켰다($5.6{\sim}51.9%$). 해양심층수 처리에 의해 사람유방암세포인 MDA-MB-231 세포의 침윤성은 $73.7{\sim}29.4%$로 감소하였으며, 세포의 침윤시 작용하는 단백질 분해 효소인 MMP-9의 활성과 단백질 발현도 경도의존적으로 억제되었다. 따라서 해양심층수는 유방암 예방과 전이관련의 더 많은 연구에 의해 유방암 예방과 전이 억제작용을 증명할 수 있을 것으로 보인다.

Immunomodulatory Effects of Hexane Insoluble Fraction of Ficus septica Burm. F. in Doxorubicin-treated Rats

  • Nugroho, Agung Endro;Hermawan, Adam;Nastiti, Kunti;Suven, Suven;Elisa, Pritha;Hadibarata, Tony;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5785-5790
    • /
    • 2012
  • The use of chemotherapeutics induces cardiotoxicity and affects immune functions, therefore development of combinatorial agents against cardiotoxicity and immunosuppression needs to be explored. Previous studies of the hexane insoluble fraction (HIF) of an ethanolic extract of Ficus septica leaves showed anticancer effects singly and in combination with doxorubicin on T47D breast cancer cells. In this present study, it was evaluated for its immunomodulatory activities in doxorubicin-treated rats. Thirty male Sprague Dawley rats were divided into five groups consisting of six rats each as follows: Group 1, receiving oral saline 10 ml/kg BW (control group); Group 2, receiving HIF dose 750 mg/kg BW orally, once daily; Group 3, receiving HIF dose 1.500 mg/kg BW orally, once daily; Group 4, given oral saline 10 ml/kg BW (normal group); Group 5, receiving HIF dose 1.500 mg/kg BW orally, once daily. The rats of group 1-3 were intramuscularly administered with doxorubicin at a dose of 4.67 mg/kg BW at the days 1 and 4 to suppress immune functions. Concomitantly, the rats were treated with saline or HIF for seven consecutive days (1 to 7). Treatment of HIF succeeded in reducing side effects of doxorubicin based on increasing lymphocyte density and phagocytosis activity and capacity of macrophages, as well as increasing the CD8+ blood level and decreasing spleen IL-10 expression. Hexane insoluble fraction of of ethanolic extract of Ficus septica leaves has potential as a protective agent combined with doxorubicin.

Ellagic Acid Exerts Anti-proliferation Effects via Modulation of Tgf-Β/Smad3 Signaling in MCF-7 Breast Cancer Cells

  • Zhang, Tao;Chen, Hong-Sheng;Wang, Li-Feng;Bai, Ming-Han;Wang, Yi-Chong;Jiang, Xiao-Feng;Liu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.273-276
    • /
    • 2014
  • Ellagic acid has been shown to inhibit tumor cell growth. However, the underlying molecular mechanisms remain elusive. In this study, our aim was to investigate whether ellagic acid inhibits the proliferation of MCF-7 human breast cancer cells via regulation of the TGF-${\beta}$/Smad3 signaling pathway. MCF-7 breast cancer cells were transfected with pEGFP-C3 or pEGFP-C3/Smad3 plasmids, and treated with ellagic acid alone or in combination with SIS3, a specific inhibitor of Smad3 phosphorylation. Cell proliferation was assessed by MTT assay and the cell cycle was detected by flow cytometry. Moreover, gene expression was detected by RT-PCR, real-time PCR and Western blot analysis. The MTT assay showed that SIS3 attenuated the inhibitory activity of ellagic acid on the proliferation of MCF-7 cells. Flow cytometry revealed that ellagic acid induced G0/G1 cell cycle arrest which was mitigated by SIS3. Moreover, SIS3 reversed the effects of ellagic acid on the expression of downstream targets of the TGF-${\beta}$/Smad3 pathway. In conclusion, ellagic acid leads to decreased phosphorylation of RB proteins mainly through modulation of the TGF-${\beta}$/Smad3 pathway, and thereby inhibits the proliferation of MCF-7 breast cancer cells.

인체 유방암 세포에서 retinoids의 영향에 대한 연구 (Effect of Retinoids on Human Breast Cancer Cells)

  • 윤현정;신윤용;공구
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

하고초 열수추출물이 Aromatase와 Cyclooxygenase 활성에 미치는 영향 (Effect of Water Extracts from Thesium chinense Tunczaninov and Prunella vulgaris L. on Aromatase and Cyclooxygenase Activities)

  • 남경수;손윤희
    • 생약학회지
    • /
    • 제35권2호통권137호
    • /
    • pp.147-151
    • /
    • 2004
  • Water extracts from Thesium chinense Tunczaninov (TCTW) and Prunella vulgaris L. (PVW) were tested for aromatase and cyclooxygenase activities. TCTW and PVW were capable of suppressing aromatase in a human placenta microsomal assay. PVW was shown to be more effective than TCTW in the suppression of aromatase activity. TCTW significantly inhibited cyclooxygenase-2 (COX-2) activity at the concentration of 0.25 (p<0.05), 0.5 (p<0.01) and 2.5 mg/ml (p<0.005). PVW also inhibited COX-2 activity in a dose-dependent manner in a concentration range of $0.05{\sim}2.5\;mg/ml$. The expression of COX-2 was inhibitied by TCTW and PVW in western blot analysis. These results suggest that TCTW and PVW may have breast cancer chemopreventive potentials by inhibiting aromatase and cyclooxygenase activities.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.