• 제목/요약/키워드: breaker capacity

검색결과 95건 처리시간 0.032초

배전용 S2급 차단기의 차단 성능평가 시험법에 관한 연구 (Study on interrupting test method for class S2 circuit breaker of distribution system)

  • 박병락;조만영;김진석;신희상;김재철
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.132-139
    • /
    • 2011
  • Technical requirements for medium voltage class circuit breaker were harmonized by IEC and IEEE, and IEC newly adopted the requirements for class S2 circuit-breaker for overhead-line with the ratings of high-frequency TRV(Transient Recovery Voltage), which IEEE already adopted. Under these circumstances, KERI(Korea Electrotechnology Research Institute) studied testing technologies and facilities, which enable to perform interrupting capacity tests for class S2 circuit-breaker. As results, KERI could carry out interrupting capacity tests for medium voltage class circuit breaker rated up to 3-phase 52[kV] 40[kA], which satisfies the IEC standard.

초전도 코일 적용으로 인한 DC 차단기의 차단 용량 증대 (Extension of Cut-off Capacity of DC Circuit Breaker due to Superconducting Coil Application)

  • 최혜원;최효상
    • 전기학회논문지
    • /
    • 제68권4호
    • /
    • pp.593-597
    • /
    • 2019
  • We proposed a current Interruption type DC superconducting circuit breaker(I-DC SCB), a protection device that combines the current limiting technology of a superconductor with the cut-off technology of circuit breaker. Unlike existing protective devices, the current I-DC SCB is a device that combines two protection functions, notably improving failure probability and operational reliability. It is also applicable to all DC systems, such as HV, MV, and LVDC, due to the ease in capacity increase. The 100 kV I-DC SCB was designed after taking into account the actual power system conditions, followed by an analysis of the transient characteristics and the breaking range of the limiter. The results of the analysis showed that the I-DC SCB had a fault current limit of about 75% at the rated voltage, and completed the cut-off operation within about 20 ms.

전류 차단기 메커니즘에서 에너지방법을 이용한 차단 속도에 따른 스프링 모델링 (Opening Spring Modeling of Current Circuit Breaker Mechanism with respect to Opening Speed using Energy Method)

  • 권병희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.688-692
    • /
    • 2000
  • This study proposed design parameters of opening spring of circuit breaker that cut off the over-current in order to protect the electric device about opening speed using the energy method. We simulated the opening kinetic energy, the potential energy of opening spring and the design parameters of opening spring with respect to opening speed of VCB (Vacuum Circuit Breaker)'s moving contactor which has 24kV 25kA break capacity. From the result of simulation the initial tensional force and the final tensional force of the opening spring chose 107kgf and 282kgf respectively. Through the dynamic analysis using ADAMS, We verified that the opening speed of moving contactor satisfied break capacity of VCB and analyzed opening dynamic characteristics of VCB such as the opening displacement, the opening velocity and the opening acceleration of moving contactor in time domain.

  • PDF

IEC 60909에 의한 삼상 고장계산 (Three-phase Fault Calculation by IEC 60909)

  • 손석금
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.12-18
    • /
    • 2014
  • This paper analyzes how to calculate the three phase short circuit current calculation procedures used in the IEC 60909 short circuit. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current. Power demands are increased because of the growth of the economy for this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. How to calculate the three phase short circuit current for ac electrical system and select the high voltage and low voltage circuit breaker based on IEC 60909 standards.

362kV, 63kA 초고압차단기 투입차단시험 (Short-circuit making and breaking test for 362kV, 63kA circuit breaker)

  • 박승재;서윤택;윤학동;김맹현;고희석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.554-556
    • /
    • 2004
  • Testing capacity of KERI synthetic short-circuit testing facilities has been upgraded to fulfill the requirements up to 550kV 63kA, 1-break circuit breaker ratings. Specially the current capacity was increased 50kA to 63kA and the full type test of 362kV 63kA circuit breaker(1-break) was firstly completed in domestic. UP to now, domestic manufacturers have depended on the foreign testing laboratory for performance verification of newly designed products. This paper introduces the summary of the increased short-circuit testing facilities, the testing techniques and its results for the making and breaking performance of 362kV, 63kA circuit breaker which was Performed according to IEEE C37.06(1999) used in North America.

  • PDF

차단기의 차단합성성대기적에 관한 연구 (A Study on the Adapting for Interrupting Capacity Augmentation of Circuit Breaker)

  • 황석영;조무제
    • 대한전기학회논문지
    • /
    • 제33권8호
    • /
    • pp.299-309
    • /
    • 1984
  • This paper proposes the adapter for interrupting capacity augmentation of circuit breaker which can be applied in case of shortage in a existing circuit breaker's interrupting capacity due to utility system extension. The adapter utilizes two winding type of reactor instead of single winding type of reactor and the control of 2ry circuit is excuted by a triac interlocked with the system protective relays actuation so as to cut out the reactor by short circuit of the 2ry winding in normal situation and to cut in the reactor by open circuit of the 2ry winding in abnomal situation such as short circuit accident. As a result of the theoritical analysis and experiment, it is proved that the adaptor can reduce the voltage crop and iron loss due to the reactor signigicantly in normal system condition and do a role of reactor upon the power system accident.

확률적 고장전류 해석에 의한 차단기 용량 선정 (Selection of Capacity of Circuit Breaker by Probabilistic Short-Circuit Current Analysis)

  • 문영현;오용택
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.10-15
    • /
    • 1990
  • 본 논문에서는 전력계통에 발생할 수 있는 3상단락 고장전류 계산에 있어서 등가 임피던스를 효율적으로 계산하는 알고리즘을 제시하고, 확률적으로 고장전류 분포를 해석하여 차단기 용량을 선정하는 방법을 제시한다. 즉, 고장점에 따른 모선 어드미턴스 변화분을 계산 하므로서 고장등가 임피던스를 계산하고 특정선로의 고장점을 변화시키며 3상단락 고장전류의 확률적 분포를 해석하여 적정용량의 차단기를 선정하는 방법을 제시하였다. 제시한 알고리즘으로 IEEE-6 모선 계통과 IEEE-30모선계통에 적용하여 효용성을 입증하였고 확륙적 고장전류 해석 방법은 적정 차단기 용량을 선정함으로써 설비 투자비면에서 경제적임을 입증하였다.

  • PDF

차단기 차단용량 산정을 위한 고장계산 절차 (The Fault Current Procedure for the Interrupting Capacity Calculation of the Circuit Breaker)

  • 박헌경;김건중;박철우;신만철;임종호;류정현;윤용범;차승태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.147-150
    • /
    • 2003
  • Power demands are increased because of the growth of the economy and the improvement of a given condition life. For this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. This paper is basis on collection of the case of foregin countries. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current.

  • PDF

차단기의 투입성능 평가를 위한 최적 합성투입시험설비 (Optimized Synthetic Making Test Facilities for Estimating the Making Performance of Circuit Breaker)

  • 서윤택;김맹현;송원표;고희석;박승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.284-292
    • /
    • 2005
  • Because all of the short-circuit testing laboratories have the limitation of test facilities, the synthetic making test methods have been used to estimate the short-circuit making performance of the ultra high-voltage circuit breaker as the alternative to direct test methods. So, KERI(Korea Eelctrotechnology Research institute) has completed the construction of the synthetic making test facilities using the low capacity step-up transformer method which fulfill the requirements specified in newly revised IEC 62271-100 Edition 1.1(2003) and have the testing capability up to 550kV, 63kA full-pole circuit breaker. The test facilities using the low capacity step-up transformer method presented in this paper are made up of the unit equipments such as HCS(High-speed Closing Switch), ITMC(Initial Transient Making Current) circuit and UP TR(low capacity step-up transformer) and have the operating range of 17.6$^{\circ}$ $\~$ 145.1$^{\circ}$ for testing the circuit breaker rated on up to 50kA and 43.1$^{\circ}$ $\~$ 119.6$^{\circ}$ for more than 50kA.

Operating characteristics of a superconducting DC circuit breaker connected to a reactor using PSCAD/EMTDC simulation

  • Kim, Geon-woong;Jeong, Ji-sol;Park, Sang-yong;Choi, Hyo-sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.51-54
    • /
    • 2021
  • The DC system has less power loss compared to the AC system because there is no influence of frequency and dielectric loss. However, the zero-crossing point of the current is not detected in the event of a short circuit fault, and it is difficult to interruption due to the large fault current that occurs during the opening, so the reliability of the DC breaker is required. As a solution to this, an LC resonance DC circuit breaker combined a superconducting element has been proposed. This is a method of limiting the fault current, which rises rapidly in case of a short circuit fault, with the quench resistance of the superconducting element, and interruption the fault current passing through the zero-crossing point through LC resonance. The superconducting current limiting element combined to the DC circuit breaker plays an important role in reducing the electrical burden of the circuit breaker. However, at the beginning of a short circuit fault, superconducting devices also have a large electrical burden due to large fault currents, which can destroy the element. In this paper, the reactor is connected to the source side of the circuit using PSCAD/EMTDC. After that, the change of the fault current according to the reactor capacity and the electrical burden of the superconducting element were confirmed through simulation. As a result, it was confirmed that the interruption time was delayed as the capacity of the reactor connected to the source side increased, but peak of the fault current decreased, the zero-crossing point generation time was shortened, and the electrical burden of the superconducting element decreased.