• 제목/요약/키워드: brain neural activity

검색결과 108건 처리시간 0.023초

Improving Effect of Silk Peptides on the Cognitive Function of Rats with Aging Brain Facilitated by D-Galactose

  • Park, Dong-Sun;Lee, Sun-Hee;Choi, Young-Jin;Bae, Dae-Kwon;Yang, Yun-Hui;Yang, Go-Eun;Kim, Tae-Kyun;Yeon, Sung-Ho;Hwang, Seock-Yeon;Joo, Seong-Soo;Kim, Yun-Bae
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.224-230
    • /
    • 2011
  • In order to develop silk peptide (SP) preparations possessing cognition-enhancing effect, several candidates were screened through in vitro assays, and their effectiveness was investigated in facilitated brain aging model rats. Incubation of brain acetyl-cholinesterase with SP-PN (1-1,000 ${\mu}g/ml$) led to inhibition of the enzyme activity up to 35%, in contrast to a negligible effect of SP-NN. The expression of choline acetyltransferase (ChAT) mRNA of neural stem cells expressing ChAT gene (F3.ChAT) was increased by 24-hour treatment with 10 and 100 ${\mu}g/ml$ SP-NN (1.35 and 2.20 folds) and SP-PN (2.40 and 1.34 folds). Four-week subcutaneous injections with D-galactose (150 mg/kg) increased activated hippocampal astrocytes to 1.7 folds (a marker of brain injury and aging), decreased acetylcholine concentration in cerebrospinal fluid by 45-50%, and thereby impaired learning and memory function in passive avoidance and water-maze performances. Oral treatment with SP preparations (50 or 300 mg/kg) for 5 weeks from 1 week prior to D-galactose injection exerted recovering activities on acetylcholine depletion and brain injury/aging as well as cognitive deficit induced by D-galactose. The results indicate that SP preparations restore cognitive functions of facilitated brain aging model rats by increasing the release of acetylcholine, in addition to neuroprotective activity.

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • 제45권2호
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.

외상 후 스트레스 장애 난민에 관한 뇌 영상 연구 동향: 주제범위 문헌고찰 (Trends in Brain Imaging Research on Refugees with Post-Traumatic Stress Disorder: A Scoping Review)

  • 윤진수;김민수;추상희
    • Journal of Korean Biological Nursing Science
    • /
    • 제23권3호
    • /
    • pp.159-169
    • /
    • 2021
  • Purpose: The purpose of this study was to analyze research trends and find whether Post-Traumatic Stress Disorder (PTSD) of refugees could affect structural or functional changes of brains of those under MRI, focusing on volumes, functional connectivities, and metabolites. Methods: A literature search was done using PubMed, Embase, RISS, and KMBase to identify studies that matched our research purpose. A total of eight studies were identified using Prisma flow diagram by two reviewers independently. Results: Eight studies were identified. Three studies were on North Korean defectors as subjects. The number of studies that observed structural changes, functional changes, and metabolite changes in brains was 2, 5, and 2, respectively. Although each study observed various parts of the brain, anterior cingulate cortex (ACC) was observed commonly in three studies. The PTSD group showed reduction of ACC volume and N-acetyl-aspartate (NAA) metabolite in ACC compared to the non- PTSD group. When exposed to negative stimuli, the PTSD group showed higher neural activity than the non-PTSD group, but not vice versa. Conclusion: ACC showed significant difference in volume, neural activity, and NAA metabolite between the PTSD and the non-PTSD group, resulting in significant differences in structural changes, functional changes, metabolite changes, respectively. This study showed the need for conducting more research using various biomarkers to clarify the relationship between PTSD of refugees and their brain changes.

A novel qEEG measure of teamwork for human error analysis: An EEG hyperscanning study

  • Cha, Kab-Mun;Lee, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.683-691
    • /
    • 2019
  • In this paper, we propose a novel method to quantify the neural synchronization between subjects in the collaborative process through electroencephalogram (EEG) hyperscanning. We hypothesized that the neural synchronization in EEGs will increase when the communication of the operators is smooth and the teamwork is better. We quantified the EEG signal for multiple subjects using a representative EEG quantification method, and studied the changes in brain activity occurring during collaboration. The proposed method quantifies neural synchronization between subjects through bispectral analysis. We found that phase synchronization between EEGs of multi subjects increased significantly during the periods of collaborative work. Traditional methods for a human error analysis used a retrospective analysis, and most of them were analyzed for an unspecified majority. However, the proposed method is able to perform the real-time monitoring of human error and can directly analyze and evaluate specific groups.

유머와 기쁨에 따른 뇌 활성화와 말초의 피부전기 반응 (Neural Correlates and Electrodermal Activity Produced by Humor and Joy)

  • 석지아;장은혜;이옥현;이영창;손진훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.373-376
    • /
    • 2005
  • 본 연구에서는 뇌의 반응과 말초신경계의 변화를 통하여 유머와 기쁨의 긍정적인 정서의 구분이 가능한가를 밝히고자 하였다. fMRI와 말초신경계 반응 측정 실험 각각을 수행하는 동안, 유머와 기쁨정서를 유발하는 동영상 자극(2분)이 제시되었고, 실험이 끝난 후 심리적인 평가도 함께 수행되었다. fURI 실험은 boxcar design으로 한 session 내에 두 block으로 구성되었다. 말초신경계 반응실험에서는 안정상태와 정서상태에서의 피부전기 반응을 측정하였다. fMRI 결과, 유머자극과 기쁨자극 제시 시 공통적으로 precentral Cortex, temporal Cortex, precuneus 가 활성화 되었고, 유머자극은 기쁨자극에 비하여 우측 middle temporal cortex, 우측 inferior frontal cortex, 좌측 middle frontal cortex 에서 큰 활성화를 보였다. 피부전기 반응(EDA) 분석 결과 두 정서 모두 안정상태에 비하여 유의하게 증가하였고, 유머자극은 기쁨자극에 비하여 피부전도수준(SCL)과 피부전도반응의 수(NSCR)에서 유의하게 증가하는 것으로 나타났다.

  • PDF

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation

  • Cho, Ahra;Yeon, Chanmi;Kim, Donghyeon;Chung, Euiheon
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.88-93
    • /
    • 2016
  • Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.

Altered patterns of brain activity during transient anger among young males with alcohol use disorders: A preliminary study

  • Park, Mi-Sook;Sohn, Sunju;Seok, Ji-Woo;Kim, Eun-Hye;Sohn, Jin-Hun
    • 감성과학
    • /
    • 제18권2호
    • /
    • pp.55-64
    • /
    • 2015
  • The aim of the study was to investigate the neural substrates associated with processing anger among young males with alcohol use disorders (AUDs) using functional magnetic resonance imaging (fMRI). Eighteen individuals with AUD and 15 demographically similar non-abusers participated in the study. Participants were scanned on their brain functioning while they viewed an audio-visual film clip that was previously designed specifically to induce anger emotion, followed by anpsychological assessment. Greater brain activities were detected in the left inferior frontal gyrus (IFG) and dorsal anterior cingulate cortex (dACC) among subjects with AUD compared to the controls during the exposure to anger-provoking stimuli. Despite the same level of subjective anger during anger induction, the greater activations both in the IFG and dACC regions may suggestthat individuals with AUD have a greater propensity to undergo cognitive control and self-regulation while experiencing anger.

수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로 (A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders)

  • 김신혜;이수지;임수미;윤수정
    • 수면정신생리
    • /
    • 제28권2호
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.

자폐스펙트럼장애 환자에서의 인지적 공감 및 정서적 공감의 신경 상관물 (Neural Correlates of Cognitive and Emotional Empathy in Patients with Autism Spectrum Disorder)

  • 정승원;손정우;이승복;김혜리;이상익;신철진;김시경;주가원;최상철;김양렬;구영진
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제27권3호
    • /
    • pp.196-206
    • /
    • 2016
  • Objectives: Individuals with autism spectrum disorder (ASD) are considered to have problems with empathy. It has recently been suggested that there are two systems for empathy; cognitive and emotional. We aimed to investigate the neural response to cognitive and emotional empathy and elucidate the neurobiological aspects of empathy in patients with ASD. Methods: We recruited patients with ASD (N=17, ASD group) and healthy controls (HC) (N=22, HC group) for an functional magnetic resonance imaging study. All of the subjects were scanned while performing cognitive and emotional empathy tasks. The differences in brain activation between the groups were assessed by contrasting their neural activity during the tasks. Results: During both tasks, the ASD group showed greater neural activities in the bilateral occipital area compared to the HC group. The ASD group showed more activation in the bilateral precunei only during the emotional empathy task. No brain regions were more activated in the HC group than in the ASD group during the cognitive empathy task. While performing the emotional empathy task, the HC group exhibited greater neural activities in the left middle frontal gyrus and right anterior cingulate gyrus than the ASD group. Conclusion: This study showed that the brain regions associated with cognitive and emotional empathy in ASD patients differed from those in healthy individuals. The results of this study suggest that individuals with ASD might have defects both in cognitive empathy and in emotional empathy.