• 제목/요약/키워드: brain network

검색결과 378건 처리시간 0.029초

Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from 18F-FDG-PET/MRI

  • Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
    • Korean Journal of Radiology
    • /
    • 제23권10호
    • /
    • pp.986-997
    • /
    • 2022
  • Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.

일차성 불면증에서 전두엽의 역할 : 기능적 자기공명영상 연구 (The Roles of Frontal Cortex in Primary Insomnia : Findings from Functional Magnetic Resonance Imaging Studies)

  • 김보리;박수현;조한별;김정윤
    • 생물정신의학
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Insomnia is a common sleep-related symptom which occurs in many populations, however, the neural mechanism underlying insomnia is not yet known. The hyperarousal model explains the neural mechanism of insomnia to some extent, and the frontal cortex dysfunction has been known to be related to primary insomnia. In this review, we discuss studies that applied resting state and/or task-related functional magnetic resonance imaging to demonstrate the deficits/dysfunctions of functional activation and network in primary insomnia. Empirical evidence of the hyperarousal model and proposed relation between the frontal cortex and other brain regions in primary insomnia are examined. Reviewing these studies could provide critical insights regarding the pathophysiology, brain network and cerebral activation in insomnia and the development of novel methodologies for the diagnosis and treatment of insomnia.

  • PDF

정상 노화군과 경도인지장애 환자군의 18F-FDG-PET과 11C-PIB-PET 영상을 이용한 뇌 연결망 분석 (Brain Connectivity Analysis using 18F-FDG-PET and 11C-PIB-PET Images of Normal Aging and Mild Cognitive Impairment Participants)

  • 손성진;박현진
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권3호
    • /
    • pp.68-74
    • /
    • 2014
  • Recent research on mild cognitive impairment (MCI) has shown that cognitive and memory decline in this disease is accompanied by disruptive changes in the brain functional network. However, there have been no graph-theoretical studies using $^{11}C$-PIB PET data of the Alzheimer's Disease or mild cognitive impairment. In this study, we acquired $^{18}F$-FDG PET and $^{11}C$-PIB PET images of twenty-four normal aging control participants and thirty individuals with MCI from ADNI (Alzheimer's Disease Neuroimaging Initiative) database. Brain networks were constructed by thresholding binary correlation matrices using graph theoretical approaches. Both normal control and MCI group showed small-world property in $^{11}C$-PIB PET images as well as $^{18}F$-FDG PET images. $^{11}C$-PIB PET images showed significant difference between NC (normal control) and MCI over large range of sparsity values. This result will enable us to further analyze the brain using established graph-theoretical approaches for $^{11}C$-PIB PET images.

브레인 모사 인공지능 기술 (Brain-Inspired Artificial Intelligence)

  • 김철호;이정훈;이성엽;우영춘;백옥기;원희선
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

수면 뇌파-기능자기공명영상 동기화 측정과 신호처리 기법을 통한 수면 단계별 뇌연결망 연구 (The Feasibility for Whole-Night Sleep Brain Network Research Using Synchronous EEG-fMRI)

  • 김중일;박범희;윤탁;박해정
    • 수면정신생리
    • /
    • 제25권2호
    • /
    • pp.82-91
    • /
    • 2018
  • 목 적 : 본 연구는 전 수면 주기 동안 수면단계에 따른 전체 뇌 영역과 수면 관련 뇌 영역들의 뇌기능 연결망의 변화를 살펴보기 위해 동기화된 뇌파(EEG)-자기기능공명영상(fMRI)를 전 수면 주기 동안 측정하고 신호처리 기법을 사용함으로 수면 단계에 따른 뇌 연결망의 탐구가 가능함을 살펴 보기 위해 수행되었다. 방 법 : 정상 성인 피험자 5인을 대상으로 6~7시간의 수면동안 MRI 기계 안에서 안전도, 심전도, 근전도와 EEG-fMRI를 측정하였고 EEG에 발생한 MRI 자장 변화 잡음과 심박관련 잡음을 제거하였다. fMRI에서는 피험자의 움직임에 의해 발생하는 영상 왜곡을 보정하는 부분볼륨활용기법을 제안하여 사용하였다. 잡음이 제거된 수면중 fMRI에 독립성분분석기법을 적용하여 뇌 전체를 68 영역으로 구획하여 수면 연구에 적합한 뇌 구획 지도를 만들고 이를 바탕으로 각 구획들간의 연결성을 계산하였다. 수면관련 뇌심부 영역을 선택하여 연결망 분석을 수행하였다. 결 과 : 뇌파를 비롯한 수면 생리적 신호들은 잡음 제거의 방법을 이용하게 되면 수면단계설정에 문제가 없으며 수면 단계별 뇌 연결망 연구가 가능함을 보여 주었다. 뇌연결망 분석에서 수면 관련 뇌심부 연결망은 렘과 비렘수면에 따라 다른 특성이 나타나는데 비렘수면에서 전반적으로 높은 연결성을 보였다. 대뇌를 포함한 전체 뇌 연결망의 경우 각성에 비해서 수면 중에 뇌 연결성이 떨어지는 양상을 보였다(Kolmogorov-Smirnov 검정 ; p < 0.05, Bonferroni corrected). 결 론 : 본 연구를 통해서 장시간 수면 EEG-fMRI 측정과 수면단계설정이 가능하고 신호처리 기법을 통해서 보정하게 되면 뇌기능 연결망을 이용한 전체 수면 뇌 연구가 가능함을 시사한다.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Systematic Approach for Analyzing Drug Combination by Using Target-Enzyme Distance

  • Park, Jaesub;Lee, Sunjae;Kim, Kiseong;Lee, Doheon
    • Interdisciplinary Bio Central
    • /
    • 제5권2호
    • /
    • pp.3.1-3.7
    • /
    • 2013
  • Recently, the productivity of drug discovery has gradually decreased as the limitations of single-target-based drugs for various and complex diseases become exposed. To overcome these limitations, drug combinations have been proposed, and great efforts have been made to predict efficacious drug combinations by statistical methods using drug databases. However, previous methods which did not take into account biological networks are insufficient for elaborate predictions. Also, increased evidences to support the fact that drug effects are closely related to metabolic enzymes suggested the possibility for a new approach to the study drug combinations. Therefore, in this paper we suggest a novel approach for analyzing drug combinations using a metabolic network in a systematic manner. The influence of a drug on the metabolic network is described using the distance between the drug target and an enzyme. Target-enzyme distances are converted into influence scores, and from these scores we calculated the correlations between drugs. The result shows that the influence score derived from the targetenzyme distance reflects the mechanism of drug action onto the metabolic network properly. In an analysis of the correlation score distribution, efficacious drug combinations tended to have low correlation scores, and this tendency corresponded to the known properties of the drug combinations. These facts suggest that our approach is useful for prediction drug combinations with an advanced understanding of drug mechanisms.