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Recently, the productivity of drug discovery has gradually decreased as the limitations 
of single-target-based drugs for various and complex diseases become exposed. To over-
come these limitations, drug combinations have been proposed, and great efforts have 
been made to predict efficacious drug combinations by statistical methods using drug 
databases. However, previous methods which did not take into account biological net-
works are insufficient for elaborate predictions. Also, increased evidences to support 
the fact that drug effects are closely related to metabolic enzymes suggested the possi-
bility for a new approach to the study drug combinations. Therefore, in this paper we 
suggest a novel approach for analyzing drug combinations using a metabolic network 
in a systematic manner. The influence of a drug on the metabolic network is described 
using the distance between the drug target and an enzyme. Target-enzyme distances 
are converted into influence scores, and from these scores we calculated the correla-
tions between drugs. The result shows that the influence score derived from the target-
enzyme distance reflects the mechanism of drug action onto the metabolic network 
properly. In an analysis of the correlation score distribution, efficacious drug combina-
tions tended to have low correlation scores, and this tendency corresponded to the 
known properties of the drug combinations. These facts suggest that our approach is 
useful for prediction drug combinations with an advanced understanding of drug 
mechanisms.
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INTRODUCTION

For the past several decades, drug discovery efforts have been 
fairly successful, leading to effective and efficient treatments of 
menacing diseases. However, despite the advances in technol-
ogy and the enormous increase in research budgets, R&D pro-
ductivity in the area of drug discovery has gradually decreased1. 
Most of the reasons for this phenomenon are related to external 
factors such as the pharmaceutical environment or difficulties 
in discovering natural product drug candidates2. However, a 
more fundamental problem is related to the mechanism of 
drug action itself. Drugs which target only single molecules 
show limited efficacies and many side effects due to the redun-
dancy and robustness of the complex biological networks in 
which they act. 
  To overcome the limitations of drug therapies based on a 
single target, drug combinations have been proposed as a solu-
tion. When using multi-target agents or more than two agents 
at the same time, various drug targets can be affected simulta-
neously. In such a case, biological networks related to disease 
are affected by drugs in various ways. For this reason, drug 
combinations are more efficacious and adaptable than com-
pared to single-target agents3. Moreover, some synergistic drug 
combinations show improvements in terms of selectivity4.
The most painstaking way to discover new drug combinations 
is to verify their effects by experience sequentially. However, 
given the restrictions related to time and money, it is impossi-
ble to undertake clinical trials for all possible combinations. 
Therefore, predictions of promising drug combinations that 
show synergistic effects are very important. For this reason, 
many computational methods have been suggested to predict 
drug combinations using drug databases. For example, one re-
cent approach for finding drug combinations which integrated 
molecular and pharmacological data was introduced5. Although 
successful predictions of combinations were made in previous 
studies, the fundamental principle of a drug combination has 
yet to be revealed due to the lack of an in-depth consideration 
of the molecular mechanisms of drugs.
  As part of the effort to understand drug actions, previous 
studies investigated drug mechanisms in several cellular pro-
cesses. The important cellular processes of the metabolic path-
way have also received attention as they are related to the patho
genesis of diseases such as diabetes, cardiovascular disease, 
neurodegeneration, and bipolar disorder6-9. Despite the in-
creasing amount of evidence of multifaceted roles of metabolic 
pathways in the process of disease pathogenesis, systematic in-
vestigations of drug actions on metabolic pathways have been 
limited thus far. The accumulated information on human meta-
bolic pathways and computational techniques for modeling re-
lated perturbation effects has enabled us to delve into issues 

pertaining to the identification of drug effects. Some studies 
have also underpinned the substantial utility of investigations 
into metabolic pathways to identify drug targets and the off-tar-
get effects10,11. Hence, a systematic investigation can be utilized 
to unveil the therapeutic effects of drug combinations and ex-
pand our understanding of drug combinations at the metabolic 
level.
  Here, we suggest a novel approach for analyzing drug combi-
nations based on the interrelationship between drug targets 
and enzymes, i.e. devised influential score of drug targets to en-
zymes based on distances of proteins in a PPI network, in a sys-
tematic manner. Evidences to support the fact that drug effects 
are related to metabolic enzymes have been increased. Some 
previous studies attempted to predict undesired drug effects 
via metabolic enzymes in the context of a metabolic network10. 
Other studies considered drug effects via metabolic enzymes in 
predicting drug-drug interactions12. These studies are based on 
previous report about various drug-drug interactions of which 
drugs targeted similar sets of metabolic enzymes but impeded 
enzyme activities to other drugs13. 
  Hence we represent degree of drug effects to metabolic path-
ways in terms of the distance between drug targets and enzymes 
by a whole metabolic network. Based on the measured distance, 
we define what are known as influence scores of drugs for all 
enzymes. In addition, we calculate the correlation between two 
drugs using the influence score. The results show that there is a 
distinguishing correlation distribution pertaining to efficacious 
drug combinations that differs from that of non-efficacious 
drug combinations. Moreover, this difference in influence scores 
indicates the usefulness of our approach as a drug combination 
method.

RESULTS AND DISCUSSION

Subhead 1: Distance between drug targets and enzymes in 
protein-protein network
To evaluate the influence of drugs on the metabolic network, 
we used the distance between the drug target and the pertinent 
enzyme. This distance is defined as the shortest path length in 
the protein-protein interaction (PPI) network as established by 
connections between proteins. Because a drug target and an 
enzyme form a subset of an entire protein, both are included in 
the PPI network. In this network, a short distance between the 
drug target and a certain enzyme means that a drug has a con-
siderable amount of influence on the metabolic pathway regu-
lated by that enzyme.
  We investigated the target-enzyme distance to determine the 
properties of the target-enzyme network (Figure 1). The average 
distance between the drug target and an enzyme was approxi-
mately 4.09, when a distance between directly connected nodes 
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is regarded as 1. In other words, there are three protein nodes 
between a certain drug target and an enzyme on average. The 
distance showing the largest percentage was 4, accounting for 
approximately 41%, and more than 85% of the distances were 
covered when including 3 and 5. Despite the large number of 
drug targets and enzymes, distances between them were very 
short. This property corresponds to that of a biological network 
as a scale-free network14.
  When comparing the distance distribution of a drug target 
and a non-specific protein, which indicates all proteins in PPI 
network, to an enzyme, we found some interesting results. The 
average distance between a drug target and an enzyme was 
4.09, shorter than that of a non-specific protein between en-
zymes (4.19). We identified statistical significance of difference 
in distance distribution of two groups by Kolmogorov–Smirnov 
test (P-value < 2.2e-16). In particular, the ratio of short distances 
(d < 3) of drug targets (3.79%) was one and a half times that of 
non-specific proteins (2.21%). These results indicate that the 
drug target is closer to an enzyme than a non-specific protein.
 As the drug target becomes closer to the enzyme, it could in-
crease the chances to affect metabolic network than the drug 
targets of longer distance to the enzyme15. Therefore, drugs, of 
which targets are close to metabolic enzymes, have increasing 
tendency to treat a disease by bringing a change in the flux of 
metabolism. In other words, the protein-enzyme distance con-
cisely describes the properties of the drug.

Subhead 2: The influence score and pattern represent the 
drug action on the metabolic pathway.
Although the target-enzyme distance feasibly represents the 
characteristic of the drug, that is, increased chances to affect 
metabolic enzymes, it is inappropriate to use that distance di-
rectly to analyze drug combinations. Above all, the distance 
was not linearly proportional to the biological influence due to 
the complex biological network. Moreover, infinite distances 
are difficult to handle when calculating the correlation. Finally, 

there could be many drugs with several drug targets. In such a 
case, one drug has several distances to certain enzymes, and 
we had to integrate those distances. Therefore, applying our 
scoring method, the target-enzyme distances were converted 
into drug-enzyme influence scores with values between 0 and 1. 
This score comprehensively denotes the influence of the drug 
action to the enzyme.
  One drug has one influence score for each enzyme. Thus, the 
set of influence scores for each enzyme can be represented as a 
type of vector. We termed this vector the influence pattern of 
the drug in each case. 
  The influence patterns have possibility to discriminate types 
of drug combinations, such as synergistic or addictive types, on 
the metabolic pathway by influence patterns of drug pairs. To 
remove biased patterns due to drug targets that have no con-
nections to any metabolic enzymes, we exclude drugs whose 
targets have no paths to metabolic enzymes in a PPI network. A 
heat map of drug influence patterns shows that drugs can be 
categorized by the influence pattern which describes the drug 
action (Figure 2).

Subhead 3: The correlation score distribution depends on 
the type of effect of the drug combination.
To investigate the properties of the actions of drug combina-
tions on the metabolic network, we calculated the Pearson cor-
relation between influence patterns of two drug combinations. 
Before analyzing all of the drug combination, we choose two 
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Figure 1. Protein-protein distance histogram.
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Figure2 

Figure 2. Heat map of a drug influence pattern. Two hundred drugs were se-
lected randomly from all drugs as the sample. The x axis denotes the enzymes 
and the Y axis represents the drug. A high influence score is represented by the 
red squares.
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drug combination cases with which to determine the meaning 
of the correlation score. One drug combination (acetamino-
phen and diclofenac) showed a high correlation score (0.664) 
while also showing a simple PPI network between two drugs 
(Figure 3A). Two drugs share two target proteins, and they have 
a similar path to the enzyme. Another drug combination (acet-
aminophen and oxycodone) had a low correlation score (0.115) 
and a more complex PPI network than the former combination 
(Figure 3B). They do not share drug targets, and their path to 
each enzyme varies. These two cases of protein-enzyme net-
works indicate that the correlation score expresses the differ-
ences in the action mechanisms between the two drug combi-
nations. A high correlation score means that the influence pat-
terns of the two drugs are quite similar while a low correlation 
score means the opposite.
  Finally, we compared the distribution of the correlation scores 
for each group, categorized according to the effect of the combi-
nation. To obtain information about the effect of the drug combi-
nation, we used The Drug Combination Database (DCDB), 
which provides drug combination lists with their efficacy levels 
and effect types. Here, the term ‘efficacious’ means that a drug 
combination was able to produce the expected improvements 
over other treatments in clinical trials or pre-clinical studies16.
  The result revealed a noticeable difference in the distribu-
tions between efficacious and non-efficacious drug combina-
tions. Overall, the density graph of efficacious combinations 
was weighted with a score of 0.2 and that of non-efficacious 

combinations ranged widely from -0.2 to 1. On average, the cor-
relation score of efficacious combinations was 0.24, and that of 
non-efficacious combinations was 0.35. Thus, in general, effi-
cacious combinations had lower correlation scores (Figure 4A). 
The difference between the shapes of graph of two groups was 
remarkable. While the non-efficacious combinations resulted 
in a wide graph, meaning that they had nearly the same num-
ber for each range of correlation score, most efficacious combi-
nation scored ranged from 0 to 0.3 Almost 68% of the correla-
tion scores of efficacious combinations were in a range be-
tween 0 and 0.3, but only 43% of the scores of non-efficacious 
combinations were in that range. Another feature of efficacious 
drug combinations was that only 7% of efficacious combina-
tions scored above 0.6, whereas 36% of non-efficacious combi-
nations scored higher than 0.6.
  To obtain more insight into drug combinations, we classified 
efficacious combinations as additive, synergistic, potentiative, 
or antagonistic combinations according to their effect type17. 
Because there were few potentiative and antagonistic drug 
combinations in the DCDB, we only looked into additive and 
synergistic combinations which were statistically significant. 
Additive drug combinations showed an almost parallel distri-
bution to efficacious drug combinations. However, synergistic 
combinations interestingly showed a narrower distribution 
graph than efficacious combinations (Figure 4B). The average 
score of synergistic combinations (0.23) was lower than that of 
efficacious combinations (0.24), and the ratio of the score which 
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*It is unnecessary to insert figure 3.a and 3.b in large scale to show detail of nodes. 

We use this figure only to show the shape of network roughly 
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Figure3.b 

Figure 3. Target-enzyme interaction networks between drug combinations: (A) network of the acetaminophen and diclofenac combination, and (B) network of the 
acetaminophen and oxycodone combination. The red nodes are drugs, the blue nodes are enzymes, the green nodes are the drug target, and the blue-green nodes 
are the drug targets and enzymes at the same time.
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ranged between 0 and 0.3 was 74%, which was higher than that 
of efficacious combinations (65%).
  In summary, efficacious drug combinations tended to have 
low correlation scores, indicating that the influence patterns of 
the two drugs are not in good agreement with each other. 
Moreover, this tendency was more remarkable for the synergis-
tic drug combinations. Most synergistic drug combinations had 
a correlation score between 0 and 0.2. Further work can explain 
why the influence patterns did not show a clear correlation. 
One possible explanation comes from recent research about 
the selectivity of drug combinations. According to the literature, 
synergies are induced from multi-target interactions which re-
quire coordinated actions in a narrower range of cellular phe-
notypes4. Thus, the synergistic effect most likely appears in drug 
combinations that have a correlation score between 0 and 0.2, 
which is not too far to be coordinated and not too close to re-
strict unnecessary interference.

CONCLUSION AND PROSPECTS

In previous studies, drug combinations were analyzed and pre-
dicted with a method that did not deal with biological networks 
considerably. Here, we suggest a novel approach for analyzing 
the drug combinations using metabolic networks in a system-
atic manner. The proposed method considers the biological 
mechanisms of drugs toward metabolism based on the distance 
between the drug target and an enzyme. Therefore, this ap-
proach has the advantage of being able to determine the actual 
relationships between drugs in cells.
  The result pertaining to the different features of drug combi-
nations between the different action types shows that pheno-
types of drug combinations can be represented by correlations 

between influence patterns. In addition, if we improve the ac-
curacy of the correlation scores of influence patterns, it will be 
quite useful for predicting efficacious drug combinations. Not 
only judging the synergy effect of drugs but also predicting the 
detailed action mechanisms of particular drug combinations 
will be possible. 
  For an improvement of our method, more drug target and 
enzyme databases are necessary. Numerous drug combina-
tions cannot have their scores calculated due to the absence of 
drug target data. Moreover, the deficiency of the PPI data, which 
does not include half of the enzymes, led to the incompleteness 
of constructing a metabolic pathway. Nevertheless, our ap-
proach provides a new means of understanding drug combina-
tions with biological implications, shedding new light on the 
selectivity of drug combinations.

MATERIALS AND METHODS

Subhead 1: Drug Combination & Drug Target data
All drug combination datasets were obtained from the DCDB, 
with 499 drug combinations in total (178 approved and 321 in-
vestigational, including 40 unsuccessful cases)16. These were 
categorized into 461 efficacious and 38 non-efficacious drug 
combinations. For all drug combinations, only pairwise drug 
combinations were selectively used. For drug target annota-
tions, we used the DrugBank database. DrugBank provided in-
formation about 6,714 drugs, and among them, 3,004 contained 
the target protein data. We selectively used the drugs contain-
ing the target protein data and considered it as a complete drug 
pool, which allowed us to calculate the influence score. Conse-
quently, only drug combinations that consisted of two drugs 
and drug targets of both drugs as provided from DrugBank were 

Figure 4. Density of the Pearson correlation scores of the drug combinations: (A) the blue graph is the correlation scores of efficacious drug combination and the 
red graph is that of non-efficacious drug combinations. (B) The blue, green, and blue-green graphs express the correlation scores of efficacious, additive and syn-
ergistic drug combinations, respectively.
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utilized in our research. Among 499 drug combinations, 138 ef-
ficacious and 14 non-efficacious drug combinations were avail-
able for calculating the correlations between influence patterns.

Subhead 2: Data sources for network construction
Advances in high-throughput technologies and the accumula-
tion of information from numerous studies have made it possi-
ble to use large-scale protein-protein interaction data. We se-
lected a protein-protein interaction database, Human Protein 
Reference Database (HPRD), which collected interaction clues 
from curated information in the literature as well as large-scale 
experiment data18. From a public human metabolic network 
database, the Edinburgh Human Metabolic Network (EHMN) 
database, which contains human metabolic reactions and cor-
responding enzymes, an enzyme list was extracted for our cal-
culation. The enzyme set for calculating the distances was parsed 
from the SBML data base19. There were 1,496 enzymes in the 
SBML data, but only 738 enzymes which existed in the PPI da-
tabase constituted the enzyme set.

Subhead 3: Calculation of the target-enzyme distance 
from the protein-protein interaction database
The distance between a drug target and an enzyme calculated 
from the PPI database. If one protein interacts (specifically at 
the molecular level, this refers to binding) with another protein, 
then the distance between the two proteins is 1 and they are 
connected in the PPI network. When there is no direct interac-
tion between proteins, the distance is the shortest protein-to-
protein path length. For example, in Figure 5, the distance be-
tween node (a) and node (g) is 2, while that between node (c) 
and node (f) is 3. If the drug target is the enzyme itself, its dis-
tance is set to 0.
  In conclusion, the distances between drug target j of drug i 
and enzyme k were defined using the following equation:

  Distance (Drugtargetj
i, Enzymek) = min (Drugtargetj

i,Enzymek)

  In this formula, min (Drugtargetj
i,Enzymek) denotes the short-

est path length between drug target j of drug I and enzyme k. If 
there is no path to connect the target and enzyme, the distance 
is set to infinite. The shortest paths are calculated by MathMati-
ca20.

Subhead 4: Influence score
We defined the influence score based on the distance between 
drug targets and enzymes. When a drug had one target protein, 
the score was calculated only from that protein. However, if a 
drug had several targets, the score was calculated from the tar-
get which had the shortest distance to each enzyme. Finally, the 
influence score IS of drug i between enzyme k was defined as 
follows:

IS (Drugi, Enzymek) = [min {Distance (Drugtargetj
i, Enzymek)}+1]-2

  To make a score adequate for calculating a correlation, we 
formulate the influence score to have a value between 0 and 1 
intentionally.
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