Browse > Article
http://dx.doi.org/10.14401/KASMED.2018.25.2.82

The Feasibility for Whole-Night Sleep Brain Network Research Using Synchronous EEG-fMRI  

Kim, Joong Il (Future Medicine Division, Korea Institute of Oriental Medicine)
Park, Bumhee (Department of Biomedical Informatics, Ajou University School of Medicine)
Youn, Tak (Department of Psychiatry, Dongguk University Ilsan Hospital)
Park, Hae-Jeong (BK21 PLUS Project for Medical Science, Yonsei University College of Medicine)
Publication Information
Sleep Medicine and Psychophysiology / v.25, no.2, 2018 , pp. 82-91 More about this Journal
Abstract
Objectives: Synchronous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has been used to explore sleep stage dependent functional brain networks. Despite a growing number of sleep studies using EEG-fMRI, few studies have conducted network analysis on whole night sleep due to difficulty in data acquisition, artifacts, and sleep management within the MRI scanner. Methods: In order to perform network analysis for whole night sleep, we proposed experimental procedures and data processing techniques for EEG-fMRI. We acquired 6-7 hours of EEG-fMRI data per participant and conducted signal processing to reduce artifacts in both EEG and fMRI. We then generated a functional brain atlas with 68 brain regions using independent component analysis of sleep fMRI data. Using this functional atlas, we constructed sleep level dependent functional brain networks. Results: When we evaluated functional connectivity distribution, sleep showed significantly reduced functional connectivity for the whole brain compared to that during wakefulness. REM sleep showed statistically different connectivity patterns compared to non-REM sleep in sleep-related subcortical brain circuits. Conclusion: This study suggests the feasibility of exploring functional brain networks using sleep EEG-fMRI for whole night sleep via appropriate experimental procedures and signal processing techniques for fMRI and EEG.
Keywords
Sleep; EEG; Resting state fMRI; EEG-fMRI; Brain network; Functional connectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 2000;12:230-239.   DOI
2 Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 1998;8:229-239.   DOI
3 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn Reson Med 1995;34:537-541.   DOI
4 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186-198.   DOI
5 Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 2011;7:113-140.   DOI
6 Christoph Mulert LL. EEG-fMRI. In: Christoph Mulert LL (Ed), Physiological Basis, Technique, and Applications. Springer Berlin Heidelberg;2010.
7 Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, et al. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 2004;20:566-574.   DOI
8 Duyn JH. EEG-fMRI Methods for the study of brain networks during Sleep. Front Neurol 2012;3:100.
9 Gvilia I. Underlying brain mechanisms that regulate sleep-wakefulness cycles. Int Rev Neurobiol 2010;93:1-21.
10 Himberg J, Hyvarinen A, Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 2004;22:1214-1222.   DOI
11 Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, et al. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci U S A 2009;106:11376-11381.   DOI
12 Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626-634.   DOI
13 Iber C, Ancoli-Israel S, Chesson A. Quan SF for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. 1st ed. Wenchester, Minois: American Academy of Sleep Medicine;2007.
14 Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 2006;129:655-667.   DOI
15 Kim DJ, Park B, Park HJ. Functional connectivity-based identification of subdivisions of the basal ganglia and thalamus using multilevel independent component analysis of resting state fMRI. Hum Brain Mapp 2013;34:1371-1385.   DOI
16 Mascetti L, Foret A, Bourdiec AS, Muto V, Kusse C, Jaspar M, et al. Spontaneous neural activity during human non-rapid eye movement sleep. Prog Brain Res 2011;193:111-118.
17 Larson-Prior LJ, Power JD, Vincent JL, Nolan TS, Coalson RS, Zempel J, et al. Modulation of the brain's functional network architecture in the transition from wake to sleep. Prog Brain Res 2011;193:277-294.
18 Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 2009;106:4489-4494.   DOI
19 Maquet P. Understanding non rapid eye movement sleep through neuroimaging. World J Biol Psychiatry 2010;11 Suppl 1:9-15.   DOI
20 Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. Neuroimage 2010;52:1149-1161.   DOI
21 Nam H, Park HJ. Distortion correction of high b-valued and high angular resolution diffusion images using iterative simulated images. Neuroimage 2011;57:968-978.   DOI
22 Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science 2013;342:1238411.   DOI
23 Picchioni D, Duyn JH, Horovitz SG. Sleep and the functional connectome. Neuroimage 2013;80:387-396.   DOI
24 Picchioni D, Horovitz SG, Fukunaga M, Carr WS, Meltzer JA, Balkin TJ, et al. Infraslow EEG oscillations organize largescale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res 2011;1374:63-72.   DOI
25 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059-1069.   DOI
26 Picchioni D, Pixa ML, Fukunaga M, Carr WS, Horovitz SG, Braun AR, et al. Decreased Connectivity between the Thalamus and the Neocortex during Human Nonrapid Eye Movement Sleep. Sleep 2014;37:387-397.   DOI
27 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682.   DOI
28 Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles;1968.
29 Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 2005;9:231-241.   DOI
30 Samann PG, Tully C, Spoormaker VI, Wetter TC, Holsboer F, Wehrle R, et al. Increased sleep pressure reduces resting state functional connectivity. MAGMA 2010;23:375-389.   DOI
31 Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 2005a;493:92-98.   DOI
32 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005b;437:1257-1263.   DOI
33 Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2007;104:13164-13169.   DOI
34 Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res 2000;886:208-223.   DOI
35 Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Borisov S, Jahnke K, et al. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 2013;70:327-339.   DOI
36 Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, et al. Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A 2012;109:3131-3136.   DOI
37 Spoormaker VI, Gleiser PM, Czisch M. Frontoparietal Connectivity and Hierarchical Structure of the Brain's Functional Network during Sleep. Front Neurol 2012;3:80.
38 Spoormaker VI, Schroter MS, Gleiser PM, Andrade KC, Dresler M, Wehrle R, et al. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci 2010;30:11379-11387.   DOI
39 Sporns O. The human connectome: a complex network. Ann N Y Acad Sci;2011.
40 Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 2013;23:162-171.   DOI
41 Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev 2006;10:49-62.   DOI
42 Turk-Browne NB. Functional interactions as big data in the human brain. Science 2013;342:580-584.   DOI
43 Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, et al. Efficiency of a "Small-World" Brain Network Depends on Consciousness Level: A Resting-State fMRI Study. Cereb Cortex 2014;24:1529-1539.   DOI