• Title/Summary/Keyword: brain lipid peroxidation

Search Result 126, Processing Time 0.034 seconds

Neuroprotective and Antioxidant Effects of the Butanol Fraction Prepared from Opuntia ficus-indica var. saboten

  • Cho, Jung-Sook;Han, Chang-Kyun;Lee, Yong-Sup;Jin, Chang-Bae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • The fruits and stems of Opuntia ficus-indica var. saboten have been reported to exhibit a variety of pharmacological actions, including antioxidant, analgesic, anti-inflammatory, and anti-ulcer effects. In the present study, we evaluated effects of the butanol fraction (SK OFB901) prepared from the 50% ethanol extract of the stems on various types of neuronal injuries induced by oxidative stress, excitotoxins, and amyloid ${\beta}\;(A_{\beta})$ in primary cultured rat cortical cells. Its antioxidant and radical scavenging activities were also evaluated by cell-free bioassays. We found that SK OFB901 strongly inhibited the oxidative neuronal damage induced by $H_2O_2$ or xanthine/xanthine oxidase. In addition, it exhibited marked inhibition of the excitotoxic neuronal damage induced by glutamate, N-methyl-D-aspartic acid, or kainate. Furthermore, the $A_{\beta(25-35)}$-induced neurotoxicity was also significantly attenuated by SK OFB901. It was found to inhibit lipid peroxidation initiated by $Fe^{2+}$ and L-ascorbic acid in rat brain homogenates and scavenge 1,1-diphenyl-2-picrylhydrazyl free radicals. These results indicate that the butanol fraction prepared from the stems of Opuntia ficus-indica var. saboten exerts potent antioxidant and neuroprotective effects through multiple mechanisms, implying its potential applications for the prevention or management of neurodegenerative disorders associated with oxidative stress, excitotoxicity, and $A{\beta}$.

Cancer Chemopreventive Properties of Processed Ginseng

  • Surh, Young-Joon
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.270-280
    • /
    • 1998
  • Ginseng is one of the most widely used medicinal plants, particularly in East Asian countries. Certain fractions or purified ingredients of ginseng have been shown to exert inhibitory effects on growth of cancer cells in culture or on tumorigenesis in experimental animals. Moreover, a recent epidemiologic study reveals that ginseng intake is associated with a reduced risk for environmentally related cancers such as esophageal, gastric, colorectal, and pulmonary tumors. Heat treatment of Panax ginseng C. A. Meyer at the temperature higher than that applied to the conventional preparation of red ginseng yielded a mixture of saponins with potent antioxidative properties. Thus, the methanol extract of heat-processed ginseng (designated as'NGMe') attenuated lipid peroxidation in rat brain homogenates induced by ferric ion or ferric ion plus ascorbic acid. Furthermore, the extract protected against strand scission in f Xl 74 supercoiled DNA Induced by UV photolysis of H2O2 and was also capable of scavenging superoxide generated in vitro by xanthine/xanthine oxidate or in differentiated human promyelocytic leukemia (HL-60) cells by the tumor promoter,12-0-tetvade- canoylphorbol-13-acetate (TPA). Since tumor promotion is closely linked to oxidative stress, we have determined possible anti-tumor promotional effects of NGMe on two-stage mouse skin tumorigenesis. Topical application of NGMe onto shaven backs of female ICR mice 10 min prior to TPA significantly ameliorated skin papillomagenesi s initiated by 7,12-dimethylbenz (a) anthracene (DMBA).'Likewise, TPA-induced epidermal ornithine decarboxylase activity and elevation of tumor necrosis factor-a were suppressed signifies%fly by NGMe pretreatment. NGMe topically applied onto surface of hamster buccal pouch 10 min before each topical application of DMBA inhibited oral carcinogenesis by 76olo in terms of multiplicity. Taken together, these results suggest that processed Panax ginseng C. A. Meyer has potential cancer chemopreventive activities.

  • PDF

Antioxidant and Neuroprotective Effects of Perilla frutescens var. japonica Leaves (들깨 잎 추출물의 항산화 및 신경세포 보호작용)

  • Lee, Jong-Im;Jin, Chang-Bae;Ryu, Jae-Ha;Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The leaves of Perilla frutescens Britt. var. japonica Hara (Labiatae) are often used in gourmet food in several Asian countries. Two kinds of perilla cultivars, Namcheon (NC) and Bora (BR), have been respectively developed in Korea by the pure line of 'deulkkae' from the local variety and by the cross of 'deulkkae' and 'chajogi'. The present study evaluated and compared antioxidant and neuroprotective effects of the fractions prepared from the leaves of the two cultivars using cell-free bioassay systems and primary cultured rat cortical cells. We found that the spirit, chloroform, hexane and butanol fractions from NC and BR leaves inhibited lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In contrast, only the spirit and butanol fractions from both cultivars exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among the fractions tested, the butanol fractions from NC and BR leaves exhibited the most potent antioxidant properties, and the butanol fraction from BR was more potent than the NC fraction. In consistence with these findings, the butanol fractions from both cultivars protected primary cultured cortical cells from the oxidative damage induced by $H_2O_2$ or xanthine and xanthine oxidase, with the BR butanol fraction being more active. The butanol fractions from NC and BR did not produce cytotoxicity in our cultures treated for 24 h at the concentrations of up to $100\;{\mu}g/ml$. Taken together, these results indicate that the leaves of the two cultivars of Perilla frutescens exert antioxidant and neuroprotective effects, and that the butanol fraction from BR leaves exhibits the most potent antioxidative neuroprotection among the fractions tested in this study.

α-Pinene Attenuates Methamphetamine-Induced Conditioned Place Preference in C57BL/6 Mice

  • Chan Lee;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.411-416
    • /
    • 2023
  • Methamphetamine (METH) is a powerful neurotoxic psychostimulant affecting dopamine transporter (DAT) activity and leading to continuous excess extracellular dopamine levels. Despite recent advances in the knowledge on neurobiological mechanisms underlying METH abuse, there are few effective pharmacotherapies to prevent METH abuse leading to brain damage and neuropsychiatric deficits. α-Pinene (APN) is one of the major monoterpenes derived from pine essential oils and has diverse biological properties including anti-nociceptive, anti-anxiolytic, antioxidant, and anti-inflammatory actions. In the present study, we investigated the therapeutic potential of APN in a METH abuse mice model. METH (1 mg/kg/day, i.p.) was injected into C57BL/6 mice for four alternative days, and a conditioned place preference (CPP) test was performed. The METH-administered group exhibited increased sensitivity to place preference and significantly decreased levels of dopamine-related markers such as dopamine 2 receptor (D2R) and tyrosine hydroxylase in the striatum of the mice. Moreover, METH caused apoptotic cell death by induction of inflammation and oxidative stress. Conversely, APN treatment (3 and 10 mg/kg, i.p.) significantly reduced METH-mediated place preference and restored the levels of D2R and tyrosine hydroxylase in the striatum. APN increased the anti-apoptotic Bcl-2 to pro-apoptotic Bax ratio and decreased the expression of inflammatory protein Iba-1. METH-induced lipid peroxidation was effectively mitigated by APN by up-regulation of antioxidant enzymes such as manganese-superoxide dismutase and glutamylcysteine synthase via activation of nuclear factor-erythroid 2-related factor 2. These results suggest that APN may have protective potential and be considered as a promising therapeutic agent for METH-induced drug addiction and neuronal damage.

The Quality Characteristics of American Sauce Prepared with Different Amounts of Salt (소금 첨가량에 따른 아메리칸소스의 품질 특성)

  • Kim, Dong-Seok;Lee, Se-Hee;Seoung, Tae-Jong
    • Culinary science and hospitality research
    • /
    • v.18 no.3
    • /
    • pp.163-179
    • /
    • 2012
  • This study was prepared to develop American sauce with different amounts of salt through high pressure extraction and examined difference in its mechanical and sensory characteristics. Furthermore, it aimed to provide practical materials for the mass production of American sauce and other crustacean sauce products and to contribute to the development of products with superior quality and functionality by standardizing traditional cooking techniques in the food service industry. In American sauce, salt content did not have a significant effect on water content and ash content but had a significant effect on color, pH and salinity. Na and K contents increased with increasing salt content. In addition, Mg and P contents were highest in J4 containing 0.4% of salt, but they did not show any regular tendency according to salt content. For total free amino acids, 29 kinds were detected in J0 and J1, 30 in J2, 31 in J3, and 33 in J4. Detection was highest in J3 containing 0.3% of salt, and the content level was highest particularly for arginine among essential amino acids, for glutamic acid, alanine, serine, ${\beta}$-alanine and ${\alpha}$-aminoadipic acid among flavor enhancing amino acids, and for ${\gamma}$-Aminoisobutyric acid among other amino acids. We measured lipid peroxidation in American sauce using lipid extracted from a mouse brain and confirmed that the amount of antioxidant substances extracted was largest in J0 containing no salt. The results of measuring lipid peroxidation and DPPH showed that the antioxidant effect was high when salt was not contained. In the results of the sensory test, overall quality was highest in J3 containing 0.3% of salt, showing that the addition of salt affects the evaluation of overall quality. Summing up the presents of this study as presented above, we cannot expect an effect of antioxidant functionality; however, according to the results of the mechanical quality evaluation and the sensory test, American sauce containing 0.3% of salt is considered the optimal product in terms of quality. Using these results as practical materials for the mass production of crustacean sauce products, we expect to standardize traditional cooking techniques in the food service industry and to develop products with high quality and functionality.

  • PDF

Effect of Natural Plant Mixtures on Behavioral Profiles and Antioxidants Status in SD Rats (자생식물 혼합 추출물이 SD 흰쥐에서의 행동양상 및 항산화 체계에 미치는 영향)

  • Seo, Bo-Young;Kim, Min-Jung;Kim, Hyun-Su;Park, Hae-Ryong;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1208-1214
    • /
    • 2011
  • Caffeine, a psychoactive stimulant, has been implicated in the modulation of learning and memory functions due to its action as a non-selective adenosine receptors antagonist. On the contrary, some side effects of caffeine have been reported, such as an increased energy loss and metabolic rate, decrease DNA synthesis in the spleen, and increased oxidative damage to exerted on LDL particles. Therefore, the aim of this study was to develop a safe stimulant from natural plants mixture (Aralia elata, Acori graminei Rhizoma, Chrysanthemum, Dandleion, Guarana, Shepherd's purse) that can be used as a substitute for caffeine. Thirty SD rats were divided into three groups; control group, caffeine group (15.0 mg/kg, i.p.), and natural plants mixture group (NP, 1 mL/kg, p.o.). The effect of NP extract on stimulant activity was evaluated with open-field test (OFT) and plus maze test for measurement of behavioral profiles. Plasma lipid profiles, lipid peroxidation in LDL (conjugated dienes), total antioxidant capacity (TRAP) and DNA damage in white blood, liver, and brain cells were measured. In the OFT, immobility time was increased significantly by acute (once) and chronic (3 weeks) supplementation of NP and showed a similar effect to caffeine treatment. Three weeks of caffeine treatment caused plasma lipid peroxidation and DNA damage in liver cells, whereas there were no changes in the NP group. NP group showed a higher plasma HDL cholesterol concentration compared to the caffeine group. The results indicate that the natural plants mixture had a stimulant effect without inducing oxidative stress.

Effect of Daebo (Castanea crenata) Inner Skin Extract on TMT-induced Learning and Memory Injury (TMT 유도성 인지 기능 상실에 대한 대보(밤 품종) 내피 추출물의 효과)

  • Kim, Hyeon-Ju;Jeong, Ji Hee;Jo, Yu Na;Jin, Dong Eun;Jin, Su Il;Kim, Man-Jo;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.661-665
    • /
    • 2013
  • The aim of this study was to investigate the anti-amnesic effect of daebo (Castanea crenata) extract on trimethyltin chloride (TMT)-induced learning and memory impairment, in vivo. The inner skin of daebo was extracted using distilled water under reflux conditions. At the end of the adaptation period, ICR mice were divided into a control group, a TMT injection group (negative control), and a sample group (C5: 5 mg/kg body weight; C10: 10 mg/kg body weight; and C20: 20 mg/kg body weight), and were tested with learning and memory tests. The ethylacetate fraction of the daebo inner skin extract was found to increase TMT-induced memory deficit in the Y-maze and passive avoidance test. Brain tissue analysis showed that the ethylacetate fraction of daebo extract lowered the acetylcholine esterase (AChE) activity and malondialdehyde (MDA) content of neuronal cells, both of which are indicative of lipid peroxidation.

Vitamin E in vivo Studies on the Activity of Antioxidant Enzymes and CYP2E1 Expression in High PUFA-treated Brains (고도 불포화지방산으로 산화스트레스가 유도된 흰쥐의 뇌에서 비타민 E의 항산화효소 활성 및 CYP2E1 발현에 미치는 효과)

  • Choi, Mun-Ji;Kim, Hyun-Kyung;Lee, Myoung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1106-1111
    • /
    • 2012
  • It is shown that the risk of chronic disease is increased not only by the concentration of fat in the diet but also by the composition of dietary fatty acids. We investigated the anti-oxidant effects of vitamin E on dietary polyunsaturated fatty acid-fed mice. Ninety male Sprague-Dawley rats were randomly divided into 9 groups: a normal diet group (C), 4 dietary polyunsaturated fatty acid diet groups (OA, LA, LNA, DHA), and 4 dietary polyunsaturated fatty acid diet with 0.05% vitamin E groups (OAE, LAE, LNAE, DHAE). The food efficiency in the dietary polyunsaturated fatty acid diet groups was higher than in the normal diet groups. The concentration of malondialdehyde (MDA) was significantly increased by LA and DHA fatty acids. Vitamin E significantly decreased LA and LHA-induced lipid peroxidation. The activity of superoxide dismutase and glutathione peroxidase was increased in the dietary polyunsaturated fatty acid diet groups compared to the control group, while these were decreased by supplements with vitamin E, except in the OAE group. Also, the protein expression of CYP2E1 was significantly increased in only the LNA group, while these were decreased by supplements with vitamin E. These results taken together indicate that vitamin E may have positive effects on a dietary polyunsaturated fatty acid diet-induced oxidative stress in brain tissue.

Cellular protective effect of Ecklonia cava extract on ultra-fine dust (PM2.5)-induced cytoxicity (초미세먼지(PM2.5)로 유도된 in vitro 세포 독성에 대한 감태(Ecklonia cava) 추출물의 보호 효과)

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Yoo, Seul Ki;Han, Hye Ju;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.503-508
    • /
    • 2019
  • To evaluate the protective effect of Ecklonia cava on ultra-fine dust ($PM_{2.5}$)-induced cytotoxicity, we investigated the in vitro antioxidant activity and cell viability after exposure to $PM_{2.5}$. E. cava was extracted using water and 80% ethanol, and antioxidant activity was determined using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)/2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation inhibition assays. The 80% ethanol extract showed relatively higher antioxidant activity than the water extract. The cell protective effects were determined by measuring the intracellular reactive oxygen species (ROS) content and viability of nasal epithelial (RPMI-2650), lung epithelial (A549), and brain neuroblastoma (MC-IXC) cells. Results showed that the 80% ethanol extract inhibited ROS production more than the water extract. In contrast, both extracts showed similar effects on cell viability in the $PM_{2.5}$-induced cell death assay. Thus, Ecklonia cava may act as an effective resource for preventing $PM_{2.5}$-induced cytotoxicity in nasal, lung, and brain cells.

Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets (급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향)

  • Ko, Sun Young;Kang, Saem;Chang, Yun Sil;Park, Eun Ae;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.