• Title/Summary/Keyword: brain ischemic stroke

Search Result 187, Processing Time 0.025 seconds

Sertad1 Induces Neurological Injury after Ischemic Stroke via the CDK4/p-Rb Pathway

  • Li, Jianxiong;Li, Bin;Bu, Yujie;Zhang, Hailin;Guo, Jia;Hu, Jianping;Zhang, Yanfang
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.216-230
    • /
    • 2022
  • SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer's disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk;Park, Hye Jin;Min, Han Sol;Kim, Sang Dong;Bae, Seung Kuk;Kim, Jun Sik;Ryu, Rae-Hyung;Kim, Jong Chul;Kim, Sang Hyun;Lee, Seong-jun;Kang, Bong Keun;Choi, Jong-ryul;Sohn, Jeong-woo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.499-507
    • /
    • 2018
  • For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.

The Role of Double Inversion Recovery Imaging in Acute Ischemic Stroke

  • Choi, Na Young;Park, Soonchan;Lee, Chung Min;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.210-219
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate if double inversion recovery (DIR) imaging can have a role in the evaluation of brain ischemia, compared with diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Materials and Methods: Sixty-seven patients within 48 hours of onset, underwent MRI scans with FLAIR, DWI with b-value of 0 (B0) and $1000s/mm^2$, and DIR sequences. Patients were categorized into four groups: within three hours, three to six hours, six to 24 hours, and 24 to 48 hours after onset. Lesion-to-normal ratio (LNR) value was calculated and compared among all sequences within each group, by the Friedman test and conducted among all groups, for each sequence by the Kruskal-Wallis test. In qualitative assessment, signal intensity changes of DIR, B0, and FLAIR based on similarity with DWI and image quality of each sequence, were graded on a 3-point scale, respectively. Scores for detectability of lesions were compared by the McNemar's test. Results: LNR values from DWI were higher than DIR, but not statistically significant in all groups (P > 0.05). LNR values of DIR were significantly higher than FLAIR within 24 hours of onset (P < 0.05). LNR values were significantly different between, before, and after six hours onset time for DIR (P = 0.016), B0 (P = 0.008), and FLAIR (P = 0.018) but not for DWI (P = 0.051). Qualitative analysis demonstrated that detectability of DIR was higher, compared to that of FLAIR within 4.5 hours and six hours of onset (P < 0.05). Also, the DWI quality score was lower than that of DIR, particularly relative to infratentorial lesions. Conclusion: DIR provides higher detectability of hyperacute brain ischemia than B0 and FLAIR, and does not suffer from susceptibility artifact, unlike DWI. So, DIR can be used to replace evaluation of the FLAIR-DWI mismatch.

The effect of physical training on glutamate transporter expression in an experimental ischemic stroke rat model

  • Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • Objective: The present study was aimed at determining the effect of physical training on glutamate transporter activity in a middle cerebral artery occlusion (MCAO)-induced ischemia injury rat model. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into three groups. Group I included non-occlusion sham controls (n=10), Group II included non-physical training after MCAO (n=10), and Group III included rats that were subjected to physical training after MCAO (n=10). Rats in the physical training group underwent treadmill training, which began at 24 h after MCAO and continued for 14 consecutive days. The training intensity was gradually increased from 5 m/min on the first day to 12 m/min on day 3, and it was maintained until day 14. Focal cerebral ischemia was examined in adult male Sprague-Dawley rats by using the MCAO model. We determined the functional outcomes for each rat on days 1, 7, and 14. Glutamate transporter-1 (GLT-1) activity in the cortex of rats from all three groups was examined at the end of the experiment. Results: Out result show that MCAO rats exhibited severe neurological deficits on the 1 day, and there was no statistically significant in each groups. We observed that the functional outcomes were improved at days 7 and 14 after middle cerebral artery occlusion, and GLT-1 activity was increased in the physical training group (p<0.05). Conclusions: These results indicated that physical training after focal cerebral ischemia exerts neuroprotective effects against ischemic brain injury by improving motor performance and increasing the levels of GLT-1 activity.

Stachys sieboldii M iq. Protects SH-SY5Y Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Inhibition of Mitochondrion-Mediated Apoptosis Pathway (허혈-재관류 유도 SH-SY5Y 모델에서 미토콘드리아 매개 Apoptosis 기전 제어를 통한 초석잠 추출물의 세포보호 효과)

  • Jin-Woo Jeong;Eun Jung Ahn;Chul Hwan Kim;Su Young Shin;Seung Young Lee;Kyung-Min Choi;Chang-Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.57-57
    • /
    • 2021
  • Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. Stachys sieboldii Miq. (Chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of S. sieboldii Miq. (SSM) in OGD/R induced neuronal injury is not yet fully understood. The present research is aimed to investigate the protective effect and possible mechanisms of SSM extract treatment in an in vitro model of OGD/R to simulate ischemia/reperfusion Injury. Pretreatment of these cells with SSM significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) by increasing GPx, SOD, and decreasing MDA. SSM decreased mitochondrial damage caused by OGD/R injury and inhibited the release of cyt-c from mitochondrion to cytoplasm in SH-SY5Y cells. Furthermore, neuronal cell apoptosis caused by OGD/R injury was inhibited by SSM, and SSM could decrease apoptosis by increasing ratio of Bcl-2/Bax and inhibiting caspase signaling pathway in SH-SY5Y cells. SSM demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro model, and this effect was the inhibition of mitochondria-mediated apoptosis pathway by scavenging of ROS generation. Therefore, SSM may be a promising neuroprotective strategy against ischemic stroke.

  • PDF

The Protective Effects of Sopung-tang on Brain Damage in Photothrombotic Ischemia Mouse Model (뇌경색 마우스의 뇌손상에 대한 소풍탕(疎風湯)의 보호효과)

  • Jang, Seok-O;Choi, Ji-Hye;Lee, John Dong-Yeop;Choi, Yong-Jun;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.612-623
    • /
    • 2009
  • Objectives : The water extract of Sopung-tang (SPT) has been traditionally used in the treatment of acute stroke in Oriental Medicine. Pro-inflammatory cytokines play a critical role in the onset of post-ischemic inflammatory cascades. The present study was designed to investigate the effects of SPT on pro-inflammatory cytokine production in a photothrombotic ischemia mouse model. Methods : After SPT oral administration to the mice for five days, with using Rose Bengal and cold light, photothrombotic ischemia lesion was induced in stereotactically held male BALB/c mice. Also, results including, gross finding lesion size, histopathological finding changes, and inflammatory cytokine expression changes from the photothrombotic ischemia mouse model were observed. Results : The photothrombotic ischemia lesion was decreased by the oral injection of SPT. Also, SPT inhibited the expression of TNF-$\alpha$, IL-$1{\beta}$, IL-6, the active form of caspase-3 protease, and transglutaminase-2 in the photothrombotic ischemia lesion. Conclusions : These results suggest that SPT protects the ischemic death of brain cells through suppression of the production of anti-inflammatory cytokines and catalytic activation of caspase-3 protease in the photothrombotic ischemia mouse model.

  • PDF

Kami-bang-pung-tong-sung-san is Involved in Protecting Neuronal Cells from Cytotoxic Insults

  • Na Young Cheul;Nam Gung Uk;Lee Yong Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.265-273
    • /
    • 2004
  • KBPTS is the fortified prescription of Bang-pung-tong-sung-san (BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been used in Qriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis, and nervous system diseases. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. To investigate the protective role of KBPTS on brain functions, noxious stimulations were applied to neurons in vitro and in vivo. KBPTS pretreatment in cultured cortical neurons of albino ICR mice rescued death caused by AMPA, NMDA, and kainate as well as by buthionine sulfoximine (BSO) and ferrous chloride (Fe/sup 2+/) treatments. Furthermore, KBPTS promoted animal's recovery from coma induced by a sublethal dose of KCN and improved survival by a lethal dose of KCN. To examine its physiological effects on the nervous system, we induced ischemia in the Sprague-Dawley rat's brain by middle cerebral artery (MCA) occlusion. Neurological examination showed that KBPTS reduced the time which is required for the animal after MCA occlusion to respond in terms of forelimb and hindlimb movement$. Histological examination revealed that KBPTS reduced ischemic area and edema rate and also protected neurons in the cerebral cortex and hippocampus from ischemic damage. Thus, the present data suggest that KBPTS may play an important role in protecting neuronal cells from external noxious stimulations.

Hyperglycemia aggravates decrease in alpha-synuclein expression in a middle cerebral artery occlusion model

  • Kang, Ju-Bin;Kim, Dong-Kyun;Park, Dong-Ju;Shah, Murad-Ali;Kim, Myeong-Ok;Jung, Eun-Jung;Lee, Han-Shin;Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.195-202
    • /
    • 2018
  • Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. ${\alpha}$-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of ${\alpha}$-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in ${\alpha}$-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in ${\alpha}$-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in ${\alpha}$-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that ${\alpha}$-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing ${\alpha}$-synuclein expression.

Neuroprotective effect of modify Bo-Yang-Hwan-O-Tang on global ischemia in rat (전뇌 허혈성 흰쥐 모델에서 mBHT의 신경보호효과 연구)

  • Oh, Tae-Woo;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Objectives : Modified Bo-Yang-Hwan-O-Tang (mBHT) is a polyherbal medicine of twelve herbs traditionally used in the treatment of cerebral and cardiac stroke and vascular dementia. The purpose of this study was to evaluate the neuroprotective effect, pyramidal neuronal cell, inflammation and apoptosis of mBHT against global ischemia in rats. Methods : Global ischemia was produced by two-vessel occlusion(2-VO) in SD male rats. mBHT at dose of 500 mg/kg was orally administrated for 2 weeks or 6 weeks after global ischemia. The histopathological changes of ischemic brain were observed by staining of hematoxylin and eosin (H&E) and Nissl and immunohistochemisty with anti-GFAP (glial fibrillary acidic protein) antibody as a astrocyte marker. The expression of inducible nitric oxide synthase (iNOS) and apoptotic proteins such as Bax, Bcl-2 and caspase-3 was determined by western blot. Results : mBHT treatment significantly inhibited the pyramidal neuronal loss in CA1 of hippocampus of global ischemic rats by 2-VO. mBHT also suppressed the activation of astrocytes in the CA1 at 6 weeks after ischemia. In addition, mBHT significantly increased the expression of anti-apoptotic protein, Bcl-2 on iscemic brain, and significantly attenuated the expression of apoptotic proteins, Bax and caspase-3. Conclusions : These results indicate that mBHT inhibits neuronal cell damage induced in global ischemia by 2-VO, suggesting that mBHT may be a potential candidate for the treatment of vascular dementia.