Browse > Article
http://dx.doi.org/10.5625/lar.2018.34.4.195

Hyperglycemia aggravates decrease in alpha-synuclein expression in a middle cerebral artery occlusion model  

Kang, Ju-Bin (Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University)
Kim, Dong-Kyun (Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University)
Park, Dong-Ju (Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University)
Shah, Murad-Ali (Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University)
Kim, Myeong-Ok (Division of Life Science and Applied Life Science, College of Natural Sciences, Gyeongsang National University)
Jung, Eun-Jung (Department of Endocrine Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital)
Lee, Han-Shin (Department of Endocrine Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital)
Koh, Phil-Ok (Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University)
Publication Information
Laboraroty Animal Research / v.34, no.4, 2018 , pp. 195-202 More about this Journal
Abstract
Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. ${\alpha}$-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of ${\alpha}$-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in ${\alpha}$-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in ${\alpha}$-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in ${\alpha}$-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that ${\alpha}$-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing ${\alpha}$-synuclein expression.
Keywords
${\alpha}$-Synuclein; hyperglycemia; MCAO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006; 45(26): 8135-8142.   DOI
2 Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM. Exogenous ${\alpha}$-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011; 72(1): 57-71.   DOI
3 Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VM. Pathological ${\alpha}$-synuclein transmission initiates Parkinsonlike neurodegeneration in nontransgenic mice. Science 2012; 338(6109): 949-953.   DOI
4 Makoto H, Eliezer M. Alpha-synuclein in Lewy Body Disease and Alzheimer's Disease. Brain Pathol 1999; 9: 707-720.   DOI
5 Newell KL, Boyer P, Gomez-Tortosa E, Hobbs W, Hedley-Whyte ET, Vonsattel JP, Hyman BT. Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury. J Neuropathol Exp Neurol 1999; 58(12): 1263-1268.   DOI
6 Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 2001; 32(10): 2426-2432.   DOI
7 Li ZG, Britton M, Sima AA, Dunbar JC. Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 2004; 76(3): 249-262.   DOI
8 Rizk NN, Rafols J, Dunbar JC. Cerebral ischemia induced apoptosis and necrosis in normal and diabetic rats. Brain Res 2005; 1053(1-2): 1-9.   DOI
9 Dietrich WD, Alonso O, Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke 1993; 24(1): 111-116.   DOI
10 Bruno A, Liebeskind D, Hao Q, Raychev R; UCLA Stroke Investigators. Diabetes mellitus, acute hyperglycemia, and ischemic stroke. Curr Treat Options Neurol 2010; 12(6): 492-503.   DOI
11 Koh PO. Cerebral ischemic injury decreases ${\alpha}$-synuclein expression in brain tissue and glutamate-exposed HT22 cells. Lab Anim Res 2017; 33(3): 244-250.   DOI
12 Tancrede G, Rousseau-Migneron S, Nadeau A. Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Pathol 1983; 64(2): 117-123.
13 Ye X, Chopp M, Cui X, Zacharek A, Cui Y, Yan T, Shehadah A, Roberts C, Liu X, Lu M, Chen J. Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. Exp Neurol 2011; 232(2): 299-308.   DOI
14 Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7: 42.   DOI
15 Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20(1): 84-91.   DOI
16 Shah FA, Park DJ, Koh PO. Identification of Proteins Differentially Expressed by Quercetin Treatment in a Middle Cerebral Artery Occlusion Model: A Proteomics Approach. Neurochem Res 2018; 43: 1608-1623.   DOI
17 Ning R, Chopp M, Zacharek A, Yan T, Zhang C, Roberts C, Lu M, Chen J. Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats. Neuroscience 2014; 257: 76-85.   DOI
18 Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL. Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 2007; 282(8): 5862-5870.   DOI
19 Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, Aid S, Poumes-Ballihaut C, Champeil-Potokar G, Lavialle M. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 2004; 44(6): 509-538.   DOI
20 Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ. The formation of highly soluble oligomers of alphasynuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 2003; 37(4): 583-595.   DOI
21 Kaplan B, Ratner V, Haas E. Alpha-synuclein: its biological function and role in neurodegenerative diseases. J Mol Neurosci 2003; 20(2): 83-92.   DOI
22 Lee WC, Wong HY, Chai YY, Shi CW, Amino N, Kikuchi S, Huang SH. Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 2012; 425(4): 842-847.   DOI
23 Ma QL, Chan P, Yoshii M, Ueda K. Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis 2003; 5(2): 139-148.   DOI
24 Lee M, Hyun D, Halliwell B, Jenner P. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 2001; 76(4): 998-1009.   DOI
25 Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003; 66(8): 1499-1503.   DOI
26 Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008; 371(9624): 1612-1623.   DOI
27 Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ. Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 2015; 21(7): 516-522.   DOI
28 Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14(8): 1505-1517.   DOI
29 Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S, Radermacher KA, Janssen B, Gorlach A, Schmidt HH. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 2012; 90(12): 1391-1406.   DOI
30 Nigam S, Schewe T. Phospholipase A(2)s and lipid peroxidation. Biochim Biophys Acta 2000; 1488(1-2): 167-181.   DOI
31 Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281(5381):1309-1312.   DOI
32 Kuribayashi Y, Yoshida K, Sakaue T, Okumura A. In vitro studies on the influence of L-ascorbic acid 2-[3,4-dihydro- 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6yl-hy drogen phosphate] potassium salt on lipid peroxidation and phospholipase A2 activity. Arzneimittelforschung 1992; 42(9): 1072-1074.
33 Block F, Kunkel M, Sontag KH. Posttreatment with EPC-K1, an inhibitor of lipid peroxidation and of phospholipase A2 activity, reduces functional deficits after global ischemia in rats. Brain Res Bull 1995; 36(3): 257-260.   DOI
34 Sidhu A, Wersinger C, Vernier P. Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 2004; 18(6): 637-647.   DOI