• 제목/요약/키워드: brain development

검색결과 1,510건 처리시간 0.025초

정상 닭배자(배양14-20일)의 후두와 발생과정에 대한 연구 : 자기공명영상 및 해부병리학적 소견 (A Study for Normal Development of the Posterior Cranial Fossa in the Chick Embryos (gestation 14-20 days) with MR Images and Histopathology)

  • Sim Ki Bum;Lee Chang Sub;Shin Tae Kyun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권1호
    • /
    • pp.25-31
    • /
    • 2005
  • The objective was to use MR imaging to provide a template of posterior fossa development during the late stages in the chick embryos. The MR findings were then correlated with histological data. Fourteen normal formalin-fixed embryonic specimens with a gestational age of 14 to 20 days were examined with 1.5 Tesla unit MRl using a conventional clinical magnet and pulse sequences. The MR findings were correlated with the whole-mount histological specimens. Resolution of the morphological features of posterior fossa development in embryos greater than 14 days gestational age was possible. Development of cerebellum, brain stem, 4th ventricle and bony posterior fossa was documented. In the 14-day-old embryos, a premordial cerebellum was visualized in the enlarged bony posterior fossa, and it covered the the roof of the primitive fourth ventricle. The bony posterior fossa grows at the same rate along the supratentorial skull. The supratentorial skull and the rostral part of the brain grows at the same rate. The cerebellum begins to grow later than the rostral part of the brain. In the 19- to 20-day-old embryos, MRl revealed the rapid development of the cerebellar hemispheres, along with an increase in volume manifested by the more typical mushroom-shaped configuration observed in the newly hatched. At this stage, the cerebellum almost completely filled the posterior fossa and covered the entire fourth ventricle. The brain stem grew steadily, but the volume change was too subtle to evaluate. Features of cerebellar histogeneis were beyond the resolution of MRl. However, there were lots of artifacts in the features of the bony posterior fossa. An MR template of normal posterior fossa development would be useful to avoid confusion of normal development with abnormal development and to identify the expected developmental features when provided the estimated gestational age of a embryo.

  • PDF

Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages

  • Lee, Eunju;Eo, Jun-Cheol;Lee, Changjun;Yu, Je-Wook
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.281-291
    • /
    • 2021
  • Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • 제5권4호
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF

Expression of CYP1A1 and GSTP1 in Human Brain Tumor Tissues in Pakistan

  • Wahid, Mussarat;Mahjabeen, Ishrat;Baig, Ruqia Mehmood;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7187-7191
    • /
    • 2013
  • Most of the exogenous and endogenous chemical compounds are metabolized by enzymes of xenobiotic processing pathways, including the phase I cytochrome p450 species. Carcinogens and their metabolites are generally detoxified by phase II enzymes like glutathione-S-transferases (GST). The balance of enzymes determines whether metabolic activation of pro-carcinogens or inactivation of carcinogens occurs. Under certain conditions, deregulated expression of xenobiotic enzymes may also convert endogenous substrates to metabolites that can facilitate DNA adduct formation and ultimately lead to cancer development. In this study, we aimed to test the association between deregulation of metabolizing genes and brain tumorigenesis. The expression profile of metabolizing genes CYP1A1 and GSTP1 was therefore studied in a cohort of 36 brain tumor patients and controls using Western blotting. In a second part of the study we analyzed protein expression of GSTs in the same study cohort by ELISA. CYP1A1 expression was found to be significantly high (p<0.001) in brain tumor as compared to the normal tissues, with ~4 fold (OR=4, 95%CI=0.43-37) increase in some cases. In contrast, the expression of GSTP1 was found to be significantly low in brain tumor tissues as compared to the controls (p<0.02). This down regulation was significantly higher (OR=0.05, 95%CI=0.006-0.51; p<0.007) in certain grades of lesions. Furthermore, GSTs levels were significantly down-regulated (p<0.014) in brain tumor patients compared to controls. Statistically significant decrease in GST levels was observed in the more advanced lesions (III-IV, p<0.005) as compared to the early tissue grades (I-II). Thus, altered expression of these xenobiotic metabolizing genes may be involved in brain tumor development in Pakistani population. Investigation of expression of these genes may provide information not only for the prediction of individual cancer risk but also for the prevention of cancer.

Multiple Gamma Knife Radiosurgery for Multiple Metachronous Brain Metastases Associated with Lung Cancer : Survival Time

  • Kim, Hyung-Seok;Koh, Eun-Jeong;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권4호
    • /
    • pp.334-338
    • /
    • 2012
  • Objective : We compared the survival time between patients with multiple gamma knife radiosurgery (GKRS) and patients with a single GKRS plus whole brain radiation therapy (WBRT), in patients with multiple metachronous brain metastases from lung cancer. Methods : From May 2006 to July 2010, we analyzed 31 patients out of 112 patients who showed multiple metachronous brain metastases. 20 out of 31 patients underwent multiple GKRS (group A) and 11 patients underwent a single GKRS plus WBRT (group B). We compared the survival time between group A and B. Kaplan-Meier method and Cox proportional hazards were used to analyze relationship between survival and 1) the number of lesions in each patient, 2) the average volume of lesions in each patient, 3) the number of repeated GKRS, and 4) the interval of development of new lesions, respectively. Results : Median survival time was 18 months (range 6-50 months) in group A and 6 months (range 3-18 months) in group B. Only the average volume of individual lesion (over 10 cc) was negatively related with survival time according to Kaplan-Meier method. Cox-proportional hazard ratio of each variable was 1.1559 for the number of lesions, 1.0005 for the average volume of lesions, 0.0894 for the numbers of repeated GKRS, and 0.5970 for the interval of development of new lesions. Conclusion : This study showed extended survival time in group A compared with group B. Our result supports that multiple GKRS is of value in extending the survival time in patients with multiple metachronous brain metastases, and that the number of the lesions and the frequency of development of new lesions are not an obstacle in treating patients with GKRS.

Near-infrared Spectroscopy and an Example of HAM Study;Brain Activation in the Development of Drawing Skills

  • Kobayashi, Harumi;Yasuda, Tetsuya;Suzuki, Satoshi;Takase, Hiroki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1745-1748
    • /
    • 2005
  • Near-infrared spectroscopy (NIRS) can be used to monitor brain activation by measuring changes in the concentration of oxy- and deoxy-hemoglobin (Hb) by their different spectra in the near-infrared range. Because NIRS is a noninvasive, highly flexible and portable device, it is very suitable to study brain activation when a human repeatedly performs a manipulative task, and possibly provides useful information to construct human adaptive mechatronics (HAM). There is some evidence that the dorsolateral prefrontal cortex (DLPFC) plays a major role in working memory and it is proposed that the use of working memory decreases as a human develops manipulative skills. In the present study, we investigated the activation of the dorsolateral prefrontal cortex (DLPFC) of the brain in Brodmann's areas 9 and 46 in drawing tasks to examine whether NIRS can measure the changes of DLPFC activation as a human develops manipulative skills. Subjects performed a mirror image drawing task and a square drawing task by ones' left hands. In the mirror image task the subject drew following a star shape based on a mirror image of it, but square drawing did not involve mirror image and was estimated to be simpler. The changes of the concentration of oxy-Hb was higher in the mirror image drawing than the square drawing in most subjects. The changes of oxy-Hb decreased as the subject repeated the drawing task in most subjects. In conclusion, The activation of DLPFC measured by NIRS can reflect the brain activity in the development of manipulative skills.

  • PDF

SQUID를 이용한 심자도 기술의 개발동향 (Review of Magnetocardiography Technology based on SQUIDs)

  • 이용호;권혁찬;김진목;김기웅;유권규;박용기
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.139-145
    • /
    • 2012
  • Electric activity of cardiac muscles generates magnetic fields. Magnetocardiography (or MCG) technology, measuring these magnetic signals, can provide useful information for the diagnosis of heart diseases. It is already about 40 years ago that the first measurement of MCG signals was done by D. Cohen using SQUID (superconducting quantum interference device) sensor inside a magnetically shielded room. In the early period of MCG history, bulky point-contact RF-SQUID was used as the magnetic sensor. Thanks to the development of Nb-based Josephson junction technology in mid 1980s and new design of tightly-coupled DC-SQUID, low-noise SQUID sensors could be developed in late 1980s. In around 1990, several groups developed multi-channel MCG systems and started clinical study. However, it is quite recent years that the true usefulness of MCG was verified in clinical practice, for example, in the diagnosis of coronary artery disease. For the practical MCG system, technical elements of MCG system should be optimized in terms of performance, fabrication cost and operation cost. In this review, development history, technical issue, and future development direction of MCG technology are described.

몰핀 내성 형성 억제에 있어서 인삼 사포닌의 역할 (The Role of Ginseng Total Saponins in the Inhibition of the Development of Analgesic Tolerance to Morphine)

  • Kim, Hack-Seang;Oh, Ki-Wan;Seong, Yeon-Hee
    • Journal of Ginseng Research
    • /
    • 제15권3호
    • /
    • pp.179-182
    • /
    • 1991
  • The relationship between the brain monoamines and morphine tolerance was examined in ginseng total saponins treated mice. Ginseng total saponins (100 mg/kg, i.p.) did not antagonize morphine (10 mg/kg, s.c.) analgesia in mice. Daily treatment with ginseng total saponins (100 mg/kg) did not affect the brain levels of noradrenaline, dopamine and serotonin for 5 days but inhibited the development of morphine tolerance. This inhibition of the development of morphine tolerance was not attributed to the reductions of brain noradrenaline, dopamine and serotonin in mice treated with ginseng total saponins (100 mg/kg) daily. This result suggest that a newly equilibrated state of neurologic function may involve an underlying mechanism in mice treated with ginseng total saponins.

  • PDF

Normal and Disordered Formation of the Cerebral Cortex : Normal Embryology, Related Molecules, Types of Migration, Migration Disorders

  • Lee, Ji Yeoun
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.265-271
    • /
    • 2019
  • The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the cerebral cortex will be discussed.

Gintonin facilitates brain delivery of donepezil, a therapeutic drug for Alzheimer disease, through lysophosphatidic acid 1/3 and vascular endothelial growth factor receptors

  • Choi, Sun-Hye;Lee, Na-Eun;Cho, Hee-Jung;Lee, Ra Mi;Rhim, Hyewhon;Kim, Hyoung-Chun;Han, Mun;Lee, Eun-Hee;Park, Juyoung;Kim, Jeong Nam;Kim, Byung Joo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.264-272
    • /
    • 2021
  • Background: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand, which exhibits in vitro and in vivo functions against Alzheimer disease (AD) through lysophosphatidic acid 1/3 receptors. A recent study demonstrated that systemic treatment with gintonin enhances paracellular permeability of the blood-brain barrier (BBB) through the LPA1/3 receptor. However, little is known about whether gintonin can enhance brain delivery of donepezil (DPZ) (Aricept), which is a representative cognition-improving drug used in AD clinics. In the present study, we examined whether systemic administration of gintonin can stimulate brain delivery of DPZ. Methods: We administered gintonin and DPZ alone or coadministered gintonin with DPZ intravenously or orally to rats. Then we collected the cerebral spinal fluid (CSF) and serum and determined the DPZ concentration through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Intravenous, but not oral, coadministration of gintonin with DPZ increased the CSF concentration of DPZ in a concentration- and time-dependent manner. Gintonin-mediated enhancement of brain delivery of DPZ was blocked by Ki16425, a LPA1/3 receptor antagonist. Coadministration of vascular endothelial growth factor (VEGF) + gintonin with DPZ similarly increased CSF DPZ concentration. However, gintonin-mediated enhancement of brain delivery of DPZ was blocked by axitinip, a VEGF receptor antagonist. Mannitol, a BBB disrupting agent that increases the BBB permeability, enhanced gintonin-mediated enhancement of brain delivery of DPZ. Conclusions: We found that intravenous, but not oral, coadministration of gintonin facilitates brain delivery of DPZ from plasma via LPA1/3 and VEGF receptors. Gintonin is a potential candidate as a ginseng-derived novel agent for the brain delivery of DPZ for treatment of patients with AD.